Quick Navigation


A molecule known for its content in wine, and falsely said to increase lifespan (does not appear to do so in mammals). It appears to be effective at protecting the heart and blood flow, and may be an insulin sensitizer. Does not add years to life, but may add life to years.

Our evidence-based analysis on resveratrol features 272 unique references to scientific papers.

Research analysis led by and reviewed by the Examine team.
Last Updated:

Easily stay on top of the latest nutrition research

Become an Examine Member to get access to all of the latest nutrition research:

  • Unlock information on 400+ supplements and 600+ health topics.
  • Get a monthly report summarizing studies in the health categories that matter specifically to you.
  • Access detailed breakdowns of the most important scientific studies.

Try FREE for 14 days

Research Breakdown on Resveratrol

1Sources and Structure


Resveratrol is a polyphenolic compound present in grapes, and is most well known for its presence in red wine. Interestingly, the popularity of resveratrol is due to its discovery in red wine and subsequent hypothesizing that it may be able to explain the 'French paradox' of Heart Disease.[16] However, resveratrol only contributes slightly to the french paradox, as alcohol (from red wine), diet and lifestyle are also significant factors.[17][18][19]

It is estimated to have an average intake of 0.2mg daily in a Spanish population,[20] mostly (98.4%) from wine. North Americans tend to have minute levels in the diet.

Interestingly, it is classified as a phytoalexin (plant toxin). Its reason for existence is to protect grapes from infection, as it is synthesized in response to Bothrytis cinerea infection.[21][22]

Resveratrol is a polyphenolic compound referred to as a 'stilbene' due to its structure, and it is the most common and well researched stilbene currently known (despite stilbene's per se being a class of molecules). Stilbenes tend to be most well known for occurring in the Vitis family (Grape family) although they extend to many plants

Food products or other common consumables that have a resveratrol content include:

Note: 1umol of Resveratrol is equal to approximately 0.23mg
  • The Vitis family of plants,[23][24] which is usually Wine (0.005-2.861umol/L;[25] highest in Red Bordeaux) and Grapes (27-35mcg/g trans-resveratrol with 160-460ng/g cis-resveratrol[26])

  • Raspberry, at 38-59ng/g trans-resveratrol [26]

  • Plums, at 13-20ng/g trans-resveratrol [26]

  • Grape Tomatoes, at 168-175ng/g trans-resveratrol [26]

  • Piper Imperiale[27]

  • Açai berries[28]

  • Peanuts and peanut products[29] at possibly as high as 5mcg/g in boiled peanuts, 0.3mcg/g in peanut butter and 0.05mcg/g in roasted peanuts.

With common nutritional supplements that have a resveratrol content including:


Resveratrol can exist in one of two isomers: trans-resveratrol and cis-resveratrol. The configuration greatly changes the structure:

Trans-resveratrol is commonly seen as the active form of resveratrol. As the simple change results in a largely different molecule, many actions seen from trans-resveratrol are not seen with cis-resveratrol. These actions include modulation of the inflammation response,[30] and a more potent anti-proliferative effect on cancer cells.[31]

It should be noted that the cis isomer is still bioactive, but most research is focused on trans-resveratrol. Cis-resveratrol is still an anti-oxidant[32] and can interact with genetic transcription.[33]

1.3Chemical Stability

When implemented into a gel base, trans-resveratrol stored at 4C does not convert into its cis isomer over a period of 30 days, suggesting possible usage as a topical ingredient.[34] Resveratrol is also poorly soluble in water[35] but many studies that use supplemental resveratrol on an empty stomach note that it can be absorbed without fatty acids.

2Molecular Targets

2.1Sirtuin System

Sirtuins are a class of 7 protein messengers in mammalian cells with a myriad of effects.[36] Specifically, they are NAD-dependent deacetylases; they deacetylase a wide variety of other compounds, and they use NAD (Nicotinamide Dinucleatide) to do this.[37] The enzyme (SIRT1) is induced (activated) in periods of fasting and is inhibited during high nicotinamide concentrations (correlated with feeding)[38] and, as prior research shows a link between SIRT1 and resveratrol, the above activation pattern of SIRT1 and caloric intake is the most famous hypothesized 'link' between longevity (via caloric restriction) and resveratrol.

The entire sirtuin family is highly involved with regulation of mitochondria[39] and energy metabolism,[40] and is a player in musclular energy metabolism in response to exercise.[41]

The sirtuin system is a group of cytoplasmic and mitochondrial proteins that are involved in energy restriction and metabolism and thought to be related to aging, with activation of this system thought to promote longevity

2.2Mitochondrial Biogenesis

Resveratrol has been noted to exert many actions in a manner that is dependent on SIRT1[42][43][44] and it was initially hypothesized that resveratrol allosterically modified SIRT1 to increase its affinity for substrate and NAD+ (directly increasing its activity[45]), although this is currently thought to not be the case since the fluorescent used in past research (Fluor de Lys-SIRT1 peptide) may have been a research artefact (unintended mistake);[46][47][48] while a direct interaction isn't fully ruled out yet[49] it seems more likely that the influence on SIRT1 is indirect.

It seems unlikely that resveratrol directly activates SIRT1, although an activation of SIRT1 does appear to exist with resveratrol and it is currently thought to be downstream of directly influencing other molecular targets

Resveratrol may act on SIRT1 secondary to acting on AMPK in various tissues[50][51][52][53] which is thought to be due to AMPK increasing levels of NAD+ in a cell, which is the cofactor for SIRT1.[54] The opposite also holds true as abolishing SIRT1 activity prevents resveratrol from acting on AMPK,[55] and SIRT1 has the ability to deacetylate the AMPK kinase known as LKB1 which would increase AMPK activity[56][57] while abolishing SIRT1 prevents resveratrol from acting on AMPK.[55]

It was noted that AMPK was activated in a SIRT1 dependent manner at lower concentrations (25μM) but independent at higher concentrations (50μM) in C2C12 cells,[55] there is a possible pathway towards AMPK via phosphodiesterase inhibition since resveratrol inhibits PDE4 and PDE3 causing an increase in cAMP levels in the cell; increase cAMP will cause Epac1 to release calcium from the sarcoplasmic reticulum, and said calcium increases AMPK activity via the CamKKβ-AMPK pathway;[58] this was validated when Rolipram (selective PDE4 inhibitor) mimicked the effects of resveratrol.[58] Since the influence of SIRT1 on AMPK (deacetylation of LKB1) is that of a positive modulator, it is possible that PDE inhibition explains the direct AMPK activation while the lower concentrations indicate an alterate mechanism of resveratrol on SIRT1, which facilitates normally subactive concentrations of resveratrol on AMPK to then become active.

Regardless of the exact mechanisms, AMPK and SIRT1 both beneficially influence mitochondrial biogenesis[59][60] as since both SIRT1[61][62] and AMPK[63] promote the activity of PGC1α, which then promotes the transcription of proteins involved in mitochondrial biogenesis.[64] This pathway, however, has been noted to be primarily AMPK directly but dependent on SIRT1 (suggesting a positive modulator role).[60]

There is ultimately one shared result of activate SIRT1 and AMPK in a cell (increase in mitochondrial biogenesis secondary to PGC1α activatioN) although there appear to be two distinct pathways involved; it seems that resveratrol can directly activate AMPK via PDE inhibition at higher concentrations, and another influence on SIRT1 may positively regulate the AMPK pathway allowing it to occur at lower concentrations


Below is the interesting and detailed description; skip to the quoted blocks for the laymans terms.

3.1Bioavailability and Absorption

Resveratrol has a good absorption but low bioavailability when orally administered to man, as evidence by one study noting an oral dose of 25mg resulting in less than 5ug/mL in the serum while 0.2mg (125-fold lower) dose injected into serum resulted in levels of 16.4-30.7 ng/mL.[65] This is due to rapid conjugation via sulphation and glucuronidation (P450 enzymes) that reduce the amount of free resveratrol.[66]

There appears to be variation between individuals between dosages, which is less of a concern with low dosages and more of a concern with superloading. At an oral dose of 25mg there is merely a 2-fold difference in maximal differences[65] whereas at 5g a range of 52-2834 ng/g when measuring liver levels of resveratrol, and plasma levels varying from 800-5000ng/mL, exists.[67]

Interestingly, there is a circadian rhythm with resveratrol absorption. It appears the concentration of resveratrol in the blood is more dose-efficient (more bioavailable) in the morning relative to the PM,[68] which may be due to diurnal variations in one of the main system that metabolizes free resveratrol, P450 glucuronidation.[69] Additionally, enterohepatic circulation, which resveratrol is subject to[70] decreases in the morning.[71]

When consumed with a balanced meal, the overall bioavailability of Resveratrol does not change. However, the time until peak levels in the blood (Tmax) and the peak levels (Cmax) are delayed and reduced, respectively. Overall exposure (AUC) does not change with the balanced meal,[72] but may in response to a higher-fat meal (45g relative to 15g in the balanced meal).[73]

Its well absorbed in the intestines, and food does not affect its overall absorption. Bioavailability is another issue though, as conjugation begins at this stage.

3.2Kinetics (Supplementation)

When ingested orally, resveratrol is taken up from the intestines to the liver (like any xenobiotic). It can be sulphated at either location[74] and it along with glucuronide conjugates account for up to 90% of serum resveratrol levels (the other 10% being free resveratrol)[75][76][77]. Coingestion with bioflavonoids causing competitive inhibition that may free up Resveratrol by having the other bioflavonoids act in a sacrificial manner,[78] specifically Quercetin.[79][66] However, at least one study using 500mg Quercetin and 2000mg trans-resveratrol noted no differences in resveratrol pharmacokinetics after co-ingestion of quercetin.

Dose dependence can be seen with capsules, with Cmax values of around 73ng/mL (100mg oral dose) 147ng/mL (1g oral) 268ng/mL (2.5g) and 534ng/mL (5g).[80] The larger doses gradually shifted the Tmax backwards towards 1.5 hours from 1 hour.[80] These dosages are relatively high, but lower have been studied; Cmax values have been noted at 1.48–3.83ng/mL (25mg) 6.59–7.39ng/mL (50mg) 21.4–23.1ng/mL (100mg) and 24.8–63.8ng/mL (150mg).[68] Tmax is harder to get from this study due to multiple dosing throughout the day.

In human trials with only trans-resveratrol, doses of 500mg resulted in a 24hour mean plasma concentration of 8.36ug/L and higher doses of 5g resulted in a 24 hour mean plasma concentration of 51.9ug/L; the Cmax was 72.6 μg/L at 50 minutes and 538.8 μg/L at 90 minutes, respectively.[80] These numbers are approximations, as there appears to be large inter-individual differences in the correlation between oral dose and blood levels.[81] The Cmax appears to follow loading parameters, and repeated dosages appear to induce subsequently higher levels of blood resveratrol.[82][83]

Micronized Resveratrol (SRT501) with particulate sizes of less than 5μm, the Cmax was found to be 8.51nmoL/L (1942 ng/mL) at 2.8 hours after oral ingestion.[67] A high inter-individual variation exists with this study noting a range of range 52-2834 ng/g when measuring liver levels of resveratrol, and plasma levels varying from 800-5000ng/mL.[67] These numbers appear to suggest that micronized resveratrol has a 3.6-fold increase in bioavailability[67] when compared to previous studies with non-micronized.[80]

3.3Kinetics (Food products)

Resveratrol's absorption is relatively the same in ethanol as it is in water[84] and, as stated earlier, other bioflavonoids in wine act to increase the bioavailability of Resveratrol.[78] Thus, there is some synergism in absorption when consumed in the format of wine but this is not due to the alcohol content.

Consumption of 300mL of white wine can increase plasma levels in the range of 0.72±0.3 to 1.33±0.3umol/L and red wine in the range of 0.71±0.2 to 1.72±0.1 μmol/L.[85] As compiled in this review[66] other studies have been conducted on the pharmacokinetics of resveratrol after wine consumption. Three studies looked at 25mg of resveratrol consumption in the format of wine[86][84][87] and found, on average, a Cmax of 1.5-8ug/L (more often at the higher end) at 30 minutes after ingestion.

These numbers should be taken with a grain of salt, as in addition to the high inter-individual variation trans-resveratrol also varies in content due to growing conditions for grapes.[88]

There appears to be no difference between the resveratrol in food and wine compared to capsule form. However, resveratrol has low bioavailability anyways at around 10% of ingested dose being bioactive. Food can have an advantage due to ingestion of compounds that increase bioavailability (like Quercetin) but capsules can be micronized to increased bioavailability 3.6-fold. Additionally, it would be hard to get very large dosages through wine without saying farewell to your liver (in regards to Alcohol)

3.4Cytology (Cellular Kinetics)

Resveratrol appears to be readily taken up into cells, as evidenced by rapid serum depletion of resveratrol when injected into human subjects[65] and a robust accumulation into isolated cells (reponsive to resveratrol) within 10 minutes (the rate becoming more steady after 10 minutes).[89] The subcellular distribution of resveratrol after uptake appears to favor the membrane/organelle, with less concentration in the nucleus and less in the cytoskeleton and cytosol (the latter being equivalent).[89]

To travel through the blood, it may bind itself to albumin due to its structure[90] and incubation of free resveratrol with albumin in vitro causes a decrease in free resveratrol, from binding.[91] This binding affinity to albumin has been noted in other studies,[92] and appears to be enhanced when in the presence of fatty acids;[91] most likely due to structural changes of albumin when bound to fatty acids.[93]

Studies on HepG2 cells (liver cells) note that cellular uptake is mediated in part by passive diffusion and by carrier-mediated processes[94]

It has been quantified in vivo in gerbil brains[95] and human liver tissue[67] as well, demonstrating that it can diffuse into a cell. It has also been found in colon, lung, and heart tissue after oral administration.[96][97]


After ingestion of resveratrol, it can be conjugated by liver P450 enzymes. The results are resveratrol sulphate (via sulphation) and two glucuronides, resveratrol-O-glucuronide and resveratrol-C-glucuronide.[66]

Resveratrol has anti-oxidant properties, and when it sequesters oxidants (typically hydroxyl groups via dismutation) it can turn into one of four metabolites: piceatannol (PCT), 3,5-dihydroxybenzoic acid (3,5-DHBA), 3,5-dihydroxybenzaldehyde (3,5-DHB) and para-hydroxybenzaldehyde (PHB).[98]


Resveratrol is excreted in both the urine and the feces.

Half-life of the resveratrol molecule appears to be in the range of 1-3 hours, and can be extended slightly (2-5 hours) with multiple doses.[68]

Elimination half-life is estimated at being around 7-14 hours.[65]

In the end, resveratrol is readily absorbed and distributed to the body. It is mostly excreted within a day, and has a half-life of a few (1-3) hours. Blood levels are relatively dose-dependent, and the 'peak' level of blood concentration is slowly pushed backwards (up to 90 minutes, from 30) with the more resveratrol you consume. It can get into cells as well, when should preclude its metabolic actions. Its only real downfall is that it is heavily conjugated by the liver (P450)


4.1Hypothesized Mechanisms

In Drosophilia and C.Elegans (two research creatures), the mechanism of longevity appears to be activation of Sirt2; a NAD+ dependent histone deacetylase protein.[99] In Drosophilia, there appears to be interaction with both gender and diet with females on low-carbohydrate diets having benefit at the lowest dose resveratrol.[100]

As mentioned in the section on Sirtuins, these beneficially influences on the Sirtuin system may be vicariously through activation of AMPK.

Downregulation of p53 expression in neurons has also been shown to dose-dependently be associated with increasing lifespan in Drosophilia,[101][102] which is hypothesized to be downstream of the junction of interest.[103]

In a drosophilia genomic-wide analysis,[103] cross-referencing caloric restriction, Sirt2 long-living flies and p53 long-living flies, there came to be 21 genes that were shared between the three long-living creatures. These genes include takeout (expression related to food intake), which is related to Juvenile Hormone (insect-exclusive) and life-extension.[103][104] Of interest to humans is that the 21 overlapping genes had "relationships to chromatin structure, circadian rhythm, neural activity, detoxification/chaperone activity, muscle maintenance, immune function, growth factor activity and feeding behavior/response to starvation".[103]

Hypothesized mechanisms in mammals are various and were outlined in the Sirtuin section on 'Direct/Indirect influences'; less promosing than Drosophilia and C.Elegans mechanisms.

4.2Studies in Drosophilia and C.Elegans

It appears that resveratrol reliably increases lifespan in these two non-mammalian models,[105][105][103][106][99] which may be related to acting on Juvenile Hormone; a longevity promoting yet insect exclusive hormone.[103][104]

In insect models (commonly used in longevity research as they have short lifespans and a study spanning an insects lifetime is actually practical to conduct and publish), resveratrol may promote lifespan by a mechanism that does not exist in humans

4.3Studies in Mammals

In mammalian models of premature aging, resveratrol does not seem to be indicative of enhanced lifespan per se.[107][108][109][99] However, resveratrol is effective in inhibiting or reversing salient effects of aging (osteoporosis, sarcopenia, cognitive decline, etc.) and may give the illlusion of longer life or otherwise give life to your years rather than add years to your life.[77] In rats, these beneficial effects (parameters of aging) have been treated with doses as low as 4.9mg/kg bodyweight a day.[110]

It should be noted that this is not the consensus, and some studies do note increase longevity in lab animals.[111] However, it is currently up for debate whether the effects seen are due to a legitimate life extension mechanism or whether they protect from causes of death acutely (such as heart attacks) and push the median lifespan past statistical significance.

At this moment in time, it appears that resveratrol 'adds life to years' rather than 'adds years to life'. It may protect against common causes of death (covered in heart health and cancer metabolism) as well as metabolic syndrome, which could then push the median lifespan higher and exert a 'pseudo-life extension' appearance; however, a novel life extension mechanism independent of lifestyle that can be attributed to resveratrol appears to be lacking.



Resveratrol is able to cross the mammalian blood brain barrier, and incorporate itself into brain tissue.[95]

5.2Cerebral Blood Flow

Resveratrol, at doses between 250-500mg of the trans-resveratrol isomer, have been noted to increase cerebral blood flow in healthy human subects.[112] This was not accompanied by an increase in cognitive performance.

5.3glutamatergic Neurotransmission

Resveratrol may suppress glutamate release from neurons[113] although other evidence suggests that this does not occur.[114] Regardless of its effects presynaptically, resveratrol appears to attenuate glutamatergic activation of activated neurons[113][114][115] with an IC50 of 53.3+/-9.4µM which differntially affected glutamate receptors. 100µM of resveratrol inhibited AMPA currents (19.4+/-6.3%) less than NMDA (49.8+/-8.9%) and kainate (74.1+/-4.5%) with this inhibition was reversible.[114] Although it is not known why this occurs, it is thought that REDOX modulation may occur similar to pyrroloquinoline quinone (since it affects the NMDA but not AMPA receptors[116][117]) or that the known inhibition of L-type calcium channels.[118]

Other studies have noted that glutamate-induced changes (associated with excitotoxicity) are attenuated with resveratrol,[119][120] lending support for the suppressive effects on glutamatergic signalling.

At least one study noted that neuroprotection from resveratrol was abolished with an NMDA receptor antagonist,[121] which the authors thought reflected a preconditioning effect (as despite NMDA overactivation contributing to toxicity[122] a low level of activation preconditions the neurons and is neuroprotective[123]).

There are unclear effects of resveratrol on the glutaminergic receptors. While in general it appears to suppress overactivation of glutaminergic signalling (all three major receptor subsets), some neuroprotective effects appear to be prevented by blocking the receptor. It is possible that resveratrol is a weak agonist of sorts while outcompeting stronger agonists

In regards to seizures induced by kainic acid (acting via kainate receptors, one of the glutamate receptor isoforms), resveratrol appears to be able to reduce seizures and hippocampal neurotoxicity[124][125][126][127] although it appears ineffective in younger still developing rats[128] who are known to be more sensitive to kainate-induced seizures.[129]

May suppress the signalling through kainate receptors, and reduces the seizure potential of kainic acid. This appears to be well replicated in rat models, although it failed in the one more sensitive to kainic acid

In morphine tolerant mice (experiencing upregulations in NR1 and NR2B subunits of NMDA receptors which contributes to morphine tolerance[130][131]), resveratrol administration into the brain (7.5-30µg) appears to downregulate these two subunits via preventing an increase in PSD-95 expression with no inhernet suppressive effect without morphine.[132] PSD-95 provides a physical anchorage for NMDA receptors at the membrane[133] and this was thought to mediate the suppression in NMDA receptor increases.[132]

With agents that predispose the neurons to excitotoxicity secondary to upregulating NMDA receptors, resveratrol has been implicated in preventing this upregulation. Although the mechanism is not known, it appears to be through preventing a scaffolding protein from supporting NMDA receptors in the membrane

5.4Glial Interactions

Glial cells are cells used to support neurons, and are highly involved in neurological systems being associated with their own form of plasticity and metabolic coupling[134] and influencing synaptic function;[135][136] some nutritional supplements such as D-Serine are also known as gliotransmitters as they are borne from astroglia, and glial cells are involved with neurons (presynaptically and postsynaptically) in a sort of tripartite synapse.[137]

Astrocytes are also involved in glutamatergic neurotransmission as they can convert glutamate into glutamine (via glutamine synthetase)[138] and the released glutamine is taken up by neurons for converion into glutamate via a glutamate-glutamine cycle[139][140] to then be released into the synapse.

Glial cells, particularly the astrocytes, are intimately involved in neurotransmission between neurons and are further implicated in glutaminergic neurotransmission

It is hypothesized[141] that resveratrol acts on glial cells as it has been noted to increase glutamate uptake into glial cells in the dosage range of 0.1-250μM[142] which also appears to increase glutathione content of these cells.[143] Resveratrol has also been noted to protect astroglia from neurotoxicity from ammonia[144] which is used in the process of converting glutamate into glutamine via glutamine synthetase. It seems that under periods of ammonia toxicity that this enzyme is downregulated due to increased oxidative stress[145][146][147] and as such the upregulation of this enzyme seen with resveratrol[142] may underlie the protective effects.[144]

Resveratrol appears to increase glial cell uptake of glutamate, and encourage its production into glutamine. This mechanisms can be used to explain neuroprotection from ammonia, and it may also contribute to the observed anti-glutaminergic effects of resveratrol


Resveratrol has also been shown in some studies to be synergistic with Melatonin supplementation in preventing beta-amyloid induced neurotoxicity[148] and potentiates Resveratrol's induction of the anti-oxidant enzyme, heme-oxygenase 1, which is linked to neuroprotection.[149]

Additionally, dosages of 30mg/kg bodyweight in gerbils (RP injection) have been linked to significant protective effects following ischemia, protecting neurons from delayed cell death.[95]


In age-accelerated mice (SAMP8), it appears that lifelong supplementation of resveratrol may increase lifespan and delay biomarkers of Alzheimer's (beta-amyloid and tau protein aggregation).[150]

6Cardiovascular Health


When investigating SIRT1 levels of the endothelium of persons with coronary artery bypass, they were found to be expressed at lower levels in artherosclerotic arteries relative to normal vessels (about 60% of normal level for tissue, 20% for the endothelium itself).[151]

The typical target of resveratrol, SIRT1, appears to be reduced in artherosclerotic arteries

In regards to oxidized LDL (oLDL; a form of LDL with is seen as more artherogenic), resveratrol is able to attenuate the rate of oLDL formation form LDL secondary to its direct anti-oxidative effects against both metal ions and hydrogen peroxide.[152][153][35]

6.2Blood Flow and Vasorelaxation

When looking at the endothelial nitric oxide synthase enzyme (eNOS), resveratrol can upregulate eNOS mRNA in isolated endothelial cells (HUVEC and EA.hy 926) at 1-100μM associated with increased activity of the promoter (2-fold at 10μM) secondary to increasing its stability and half-life;[154] the effect was not associated with the estrogen receptors,[154] which is a trait of estrogen receptor activation.[155]

Uncoupling of eNOS (which is caused by deficiency of the tetrahydrobiopterin subunit aka. BH4[156][157]) is when the eNOS enzyme no longer couples exclusively to its substrate L-arginine and can begin producing superoxide (O2-) radicals;[158][157] such uncoupling can be treated by either NADPH oxidase inhibition[159] or via increasing BH4 synthesis. Resveratrol possesses both of these properties, being able to reduce the expression of the NOX4 subunit of NADPH oxidase[160] and able to increase the activity of GTP cyclohydrolase 1 (GCH1), the rate limiting enzyme of BH4 synthesis (30-100mg/kg resveratrol in mice).[161]

Resveratrol appears to stabilize the mRNA which signals the genome to produce the eNOS enzyme (thereby increasing overall production of eNOS), which is not related to the estrogenic effects of resveratrol. There is also a recoupling effect on eNOS (by mitigating some of the pathological changes seen in unhealthy states)

Resveratrol is being investigated for its benefits to the endothelium as it is a direct free radical scavenger (specifically ROS) at 10-100µM[151][162] may inhibit NADPH,[163] and at least in vitro appears to induce eNOS;[164] these effects of resveratrol suggest it can be beneficial in preserving endothelial responsiveness to agents that induce vasorelaxation (such as nitric oxide or acetylcholine), which are commonly hindered by alterations of the above three mechanisms.[165][166]

Resveratrol is thought to preserve the response of the endothelium to endogenous (occurring within the body) agents that induce relaxation. Relaxation of the vessel wall by these agents tends to be impaired in chronic disease, and resveratrol may reverse or attenuate this impairment

28 days of resveratrol supplementation in spontaneously hypertensive rats at 0.448-4.48mg/L (the lower dose to mimic moderate wine consumption; 0.05-0.5mg/kg in rats and equivalent to 3.3-33mg resveratrol in humans) was able to increase acetylcholine-induced maximal vasorelaxation from 60.7+/-1.4% in control to 80.8% (no dose dependence noted) without influencing KCl or phenylephrine induced contraction nor the EC50 of acetylcholine induced contraction.[167] Enhancement of vasorelaxation has been noted elsewhere with a higher dose of 5mg/kg to a similar degree of efficacy.[168]

One study in spontaneously hypertensive rats noted that endothelial nitric oxide synthase (eNOS) was not significantly altered despite enhanced acetylcholine responsiveness of the endothelium,[167] although in vitro studies note increases in eNOS at physiologically relevant concentrations.[154][164][169] This was thought to explain enhanced endothelial-dependent vasodilation noted in rats given 5mg/kg resveratrol (a supplemental dose),[168] and noted that it can occur at lower doses occurring in wine (human equivalent of 3.3mg) to a similar degree as higher doses.[167]

Appears to enhance acetylcholine induced relaxation of the arteries in rats with hypertension, which is thought to be related to the endothelial-dependent vasorelaxation noted in rat models; this may be independent of changes in blood pressure.

6.3Blood Pressure

Several rat studies using resveratrol that note benefits to the endothelium and vasorelaxation have noted that reductions in resting blood pressure may not occur.[167]

Resveratrol and related grape phenolics are investigated for their effects on blood pressure since dealcoholized wine has been demonstrated to reduce blood pressure in persons at risk for heart disease.[170]

6.4Cardiac Tissue

Mechanistically, the protein quinone reductase NQO2 appears to have remarkably high affinity for resveratrol with a KM of less than 50nM;[171][172] complexing can be read here.[173] This protein does not appear to be highly expressed in the aorta of rats, but is highly expressed in the heart tissue (as well as liver and kidneys) and appears to decline during the rat aging process.[89]

6.5Interventions and Survey Research

Resveratrol has been investigated for its contribution to heart health after a meta-analysis first found a significant risk reduction associated with 1-2 glasses (150-300mL) of wine daily.[174] There was a hormetic curve (J-curve) with the peak of preventative actions at 300mL resulting in a Risk Ratio of 0.61 (approximately 61% of the risk of vascular health complications in those consuming 150-300mL wine daily); this prompted research into both resveratrol and alcohol and heart health.[174]

7Interactions with Glucose Metabolism

7.1Insulin sensitivity and Diabetes

Resveratrol, per se, has been shown to increase insulin sensitivity when supplemented obese persons at 150mg daily as measured by HOMA index and measured at 13.3% improvement over 30 days alongside reductions in glucose (4.2%) and insulin (13.7% reduction).[175] It has been suggested to do most of its mechanisms of action on the level of the cell, as it increases Akt phosphorylation (Type II diabetics at 5-10mg daily)[176] and activates AMPK (150mg in non-diabetic obese persons).[175] This mechanism of insulin sensitization, AMPK, is not activated in healthy non-obese persons nor are there apparent benefits to insulin sensitivity of muscle, fat, or the liver in this population.[177] This study, however, used 75mg, a dose higher than the one associated with insulin sensitization in type II diabetics[176] and half of that which activated AMPK in healthy obese adults.[175] Additionally, these benefits appear to fade after 6 months cessation of supplementation.[15]

Resveratrol appears to benefit glucose metabolism, with lower doses needed for those in worse metabolic condition (insulin resistant, diabetic) and higher doses needed for those in pre-clinical disease states; may not be effective in healthy persons at increasing insulin sensitivity, and appears to exert temporary benefit

On the level of the pancreas, resveratrol can reduce the degree of pancreatic beta-cell death in rats fed a high dose (70-400mg/kg bodyweight).[178][179] It has been seen to have protective effects against oxidation at a low dose of 0.04% dietary intake in diabetic mice.[180] These interactions with the pancrease do not appear to influence insulin secretion, as evidenced by a prolonged study in lemurs in which resveratrol (and caloric restriction) were both implicated in improved glycemic control independent of insulin secretion.[181]

When investigated the changes seen in a group subject to an obesogenic diet compared to one with the same diet but 100mg/kg resveratrol daily, pigs fed resveratrol[182] had increased phosphorylated Akt, GLUT4 expression, and PGC-1a levels.

8Fat Mass and Obesity

8.1Interactions with Cell Cycles

Fat cells are borne from mesenchymal cells, which are pluripotent stem cells that can turn into muscle cells (myocytes), fat cells (adipocytes), bone cells (osteoblasts) or cartilage (chondroblasts). A general overview of how resveratrol affects fat metabolism is that it hinders mesenchymal cells from turning into adipocytes and thus indirectly favors the other pathways. Thus, it indirectly benefits bone health and muscle health over a long period of time (theoretically).[44]

In preadipocytes (the stage between mesenchymal cell and adipocyte), resveratrol intervention can cause a reduced viability of preadipocytes and reduced differentiation via increasing SIRT1 which suppresses the transcriptional factor PPARy and CCAAT[183] which are two proteins required for differentiation of preadipocytes into mature adipoctes.[184] This can reduce cell viability and at concentrations of 25-50uM can reduce lipid accumulation into preadipocytes.[185]

In mature adipocytes, resveratrol can induce apoptosis (possibly via non-SIRT1 mediated synergysm with TNF-alpha mediated cellular apoptosis)[186] and increased ephedrine-induced lipolysis while decreasing insulin-induced lipogenesis[187][188] and increasing insulin and basal mediated glucose uptake into adipocytes.[189] In essence, resveratrol seems to have non-significant benefits towards fat metabolism in adult cells as well as preadipocytes.

These mechanisms suggest resveratrol may be a great long-term anti-obesity agent, but it is unlikely that the above will cause fat loss over a short period of time independent of an increase in metabolic rate.

8.2Acute fat loss effects

Resveratrol, like many flavonoid-like compounds, possesses the ability to inhibit fatty acid synthase. Resveratrol can also inhibit lipoprotein lipase and hormone sensitive lipase in addition to the differentiation factors C/EBP-alpha and SREBP-1c.[186] These effects can, at concentrations of around 25-50uM, reduce fat accumulation into adipocytes.[189][44]

In addition to numerous 'inhibition' effects of resveratrol on fat metabolism, resveratrol can also induce activity of the mitochondria vicariously through SIRT1 activation of PGC1-alpha (which activates more genetic transcription conducive to fat metabolism)[61] and by increasing expression of UCP1 (Thermogenin) and SIRT3 which has the ability to reduce mitochondrial membrane potential.[186][190] These downstream effects on the mitochondria can increase thermogenesis.

Resveratrol has also recently been shown to inhibit phospdiesterase enzymes, which is notable for fat metabolism as this mechanism (which increases cAMP in cells) is the mechanism by which caffeine is synergistic with other fat loss agents such as green tea catechins.[58]

The combination of decrease fatty acid accumulation and increased fatty acid oxidation shows a promising trend towards acute fat loss mechanisms, and one in vivo human study did note that the thermic effect of food increase (albeit in a statistically insignificant manner) in obese persons.[175] However, this increase in metabolism was enough to negate an observed decrease in sleeping metabolic rate, and thus 150mg daily may not influence fat mass in either direction over 30 days.

8.3Fat Metabolism Studies in vivo

Supplementation with a high dose resveratrol at 200-400mg/kg bodyweight a day resulted in significant resistance to weight gain and increased thermogenesis, mitochondrial biogenesis, and aerobic capacity in administered rats[191] In this study, rats were immune to weight gain and better tolerated a cold-stress test, indicating that thermogenesis increased; however, the dose was very high and mice have a higher amount of brown fat relative to humans.

Since AMPK deficient mice do not respond to resveratrol well, fat loss effects and increased thermogenesis may act vicariously through AMPK influencing SIRT1.[192] This activation of AMPK is consistent with the hypothesis that AMPK activation then induces PGC-1a (through SIRT1 or directly) and thus mitochondrial biogenesis, and increased AMPK and PCG-1a protein content has been seen in humans after supplementation of 150mg resveratrol for 30 days.[175] Although it is unlikely to have as much dramatic effects as seen in rats due to differences in brown fat stores, the mechanisms in white adipose exist.

Accordingly, 150mg resveratrol for 30 days does not result in fat loss in humans. Additionally, a suppression of sleeping metabolic rate was found to be significant although a slight increase in waking metabolic rate (via non-significant increases in diet-induced thermogenesis) made the whole-day metabolic rate not significantly different between groups.[175]

Practically, resveratrol may cause some fat loss although this is most likely insignificant. Probably only enough to negate its suppression of sleeping metabolic rate and overall have no effect on fat loss in a short period of time.

9Skeletal Muscle and Physical Performance


When ingested at a dose of 4g/kg bodyweight in rats (a very high dose), resveratrol is able to augment force generation by 1.2-1.8 fold and increase exercise tolerance by 21%.[193] Lower doses have not yet been investigated.

9.2Oxidation and Health

One study on voluntary runners noted that, after running, there was an increase in the biomarker of DNA damage called 8-OH-deoxyguanosine.[194] Incubation of cells after running with resveratrol showed a prooxidant effect at 100uM; which is the first example of resveratrol acting as a pro-oxidant in a pseudo in vivo model.[195] It should be noted that there was high individual variation between runners in regards to how much DNA damage (assessed by double strand breaks) existed, and the more damage there was prior to resveratrol the more resveratrol augmented the damage. At low levels of damage, resveratrol was protective and ameliorated further damage.[194]

Whether this synergistic effect on apoptosis via oxidative stress would exert a harmful or a anti-cancer effect is currently not known.

9.3Nutrient uptake and oxidation

trans-Resveratrol, at 0.04% of the diet in rats, can increase glucose uptake into L6 myotubes via both insulin stimulated uptake and AMPK.[180] This has been noted in humans recieving 150mg resveratrol daily.[175] In addition to glucose uptake, trans-resveratrol supplementation at 150mg daily has been shown in humans to increase myocellular lipid stores.[175] These muscular changes appear to be similar to caloric restriction.

9.4Genetic signalling

Resveratrol, like its related compound Rapamycin, is able to inhibit both mTOR[196][197] and S6K1[198] by possibly both SIRT1-mediated[199] and independent mechanisms.[196] It also has the ability to prevent angiotension-II induced Akt phosphrylation, albeit in smooth muscle cells.[200][201] If the above mechanisms in vivo are the same as rapamycin, they may then inhibit exercise induced muscle protein synthesis when taken before resistance training (mediated through mTOR and Akt).[202]

However, at rest Akt1 and phospho Akt levels do not appear to be influenced by even 5g.[67]


Although Resveratrol seems to possess the ability to preserve fast-twitch muscle function in vivo, it did not (in this study) appear to protect from age-related muscle wasting at 0.05% trans-resveratrol in the feed.[203] It has been implicated in preserving lean mass at a dose of 400mg/kg in other studies of shorter duration though[204] and thus it may be an issue of either dose or time.

Indirectly, the mechanism of PCG-1a overexpression is being investigated as a method to alleviate sarcopenia risk[205] which resveratrol has been found to elevate downstream of SIRT1.[206]

Nothing overly significant in regards to muscular health, although a concerning (albeit unproven) possibility with regards to mTOR; the Rapamycin study.

9.6Oxidative Interactions

One study has noted that supplementation of 250mg resveratrol taken concomitantly with resistance training over the course of 8 weeks in otherwise healthy older men was able to prevent the reductions in blood pressure and improvements in oxygen uptake associated with exercise, which was seen in placebo given exercise alone.[207] A commentary on this study[208] has noted that many of the benefits in placebo that were statistically significant that were not significant in the resveratrol condition were of similar practical magnitude (ex. the statistical decrease of LDL-C by 0.3+/-0.2mM in placebo was significant while the 0.2+/-0.2mM in resveratrol was not) and it was claimed the harm of resveratrol was overstated. The defense from the initial authors[209] of the clinical trial[207] agreed that while the interpretation could be seen as excessive it was not the study's aim to assess practical relevance.

High dose resveratrol, due to it being an antioxidant and the process of oxidation being required for some adaptive responses to exercise, may have some hindering effects on optimal exercise adaptations. The magnitude of this 'blunting' effect appears to be minor and it may not have much practical relevance

9.7Aerobic Performance

A rat study using 146mg/kg bodyweight resveratrol for 12 weeks in conjunction with an exercise regimen (5 days a week, 60 minutes running until fatigue daily) increased time to exhaustion and performance by about 20%, theoretically secondary to increased fat oxidation and less glucose oxidation, relative to exercise alone.[193] This improved performance affected sedentary mice as well, who were better able to run (+25%) than sedentary mice given control diets. This dose is approximately 14-23mg/kg bodyweight in humans, based on extrapolation from previous studies.[210][211]

In human subjects supplementing resveratrol (150mg taken 15 minutes after exercise) over the course of four weeks alongside high intensity interval training (HIIT) in active adults noted that supplementation blunted the increase in VO2 max seen in placebo and had lesser increases in power output on a wingate test;[212] the increase in expression of a few genes induced by exercise (PGC-1α, SIRT1, and SOD2) was actually lesser with resveratrol supplementation compared to placebo with no differences in GPx1.[212] This observation was not thought to be wholly due to the antioxidant effect of resveratrol alone, as Vitamin C and Vitamin E have similar effects on genetic expression due to their antioxidant actions they do not appear to hinder VO2 max increases.[213][214]

9.8Power Output

One rat study noting improvements in aerobic performance over 12 weeks, it was found that the tibialus anterior muscle had 18% greater twitch force (no different in tetanic force) production, and greater twitch and tetanic force production (58 and 22%, respectively) when rats were fed 146mg/kg resveratrol and given exercise relative to exercise alone.[193]

10Bone Metabolism and Osteoporosis


Resveratrol can influence bone metabolism by directly influencing osteogenesis (as has been reported in vitro) by direct influence on the differentiation of cells as well as redirected the birth of stem (mesenchymal) cells from becoming fat cells into bone cells.[215][216]

Although potent on it's own, resveratrol (and other bioflavonoids) show synergism with Vitamin D.[217]

11Interactions with Hormones


Resveratrol has been found in one in vitro study to increase protein content and induce the activity of steroidogenesis acute regulatory protein (StAR), the rate limiting step in steroid synthesis. This study was conducted in ovarian cells.[218] One other study conducted in transfected Leydig cells noted a decrease in activity and mRNA content of StAR,[219] although this was only significant at concentrations of 25-50uM rather than 1-5uM, which saw a slight non-significant increase.


Resveratrol has a sort of similar structure to estrogen, not as similar as many bioflavonoids, but enough to interact with estrogen metabolism.

In breast cancer cells, resveratrol can inhibit aromatase with an IC(50) value of 25microM by both competitive and non-competitive means.[220] The IC(50) value is slightly higher in placental (JEG-3) cells.[221]

Testosterone conversion to estrogen (and subsequent proliferation of the cell line) was reduced with resveratrol at 10uM in breast cells,[220] and 25-50uM is associated with reduced transcription rates in breast and placental cells.[220][221]

In the liver, doses of 1g daily for 4 weeks has been shown to induce Aromatase (CYP1A2) and inhibit CYP3A4 along two other CYP enzymes.[81] It did not have a significant affect on Glutathione conjugation (GST) rates nor glucuronidation (UGT1A1), although it seemed to increase activity only in those with low baseline activity.[81] The induction of aromatase seen in this study is actually pro-estrogenic (induction means to make more proteins), and may be due to the dose and time, as high acute dosages of resveratrol (25mg/kg bodyweight injection) seem to still suppress aromatase in 1-7 days of treatment.[222]

12Peripheral Organ Systems


After resveratrol supplementation, the highest amount of circulating resveratrol seems to have affinity for liver cells[97][96] where is is taken up by HepG2 cells by both passive diffusion and carrier-mediated processes.[94] This uptake is fairly rapid, being less than 2 minutes after incubation[94] and was dose dependent (although no cancer cell death was seen at doses below 30uM).[223]

In the liver, resveratrol seems to be cancer-preventative by acting against hepatocellular carcinoma proliferation in vitro[224][223] and, due to these protective effects, resveratrol is currently being investigated for usage in hepatic metastasis prevention.[67]


One study in rats noted that, relative to untreated control rats, that resveratrol is able to reduce noise-induced inflammatory and oxidative change (COX-2 and ROS, respectively) in the cochlea of rats; this is thought to be a possible mechanism to attenuate hearing loss with aging.[225]

13Interactions with Cancer Metabolism

13.1Nuclear (Genetic) Mechanisms

Resveratrol appears to be a regulator of the topoisomerase II enzyme (dose-dependently, measured at 20,40,80uM) and can induce genomic damage at high does in vitro.[226] This effect is not due to resveratrol per se in mammalian cells, but appears to be through interactions with other agents that can act on the cell's nucleus,[227][226] as shown by Cu2+ ions being able to damage the DNA for effectively when incubated with resveratrol.[228]

13.2Cytological (Cellular) Mechanisms

Transfection of the p53 protein in cells which do not normally express it appears to mediate apoptosis induced by resveratrol, suggesting this is a key lever point.[229]

Fas redistribution (also known as the CD65 pathway of apoptosis), which induces cell death, has been noted with concentrations of 10-100uM in colon tumor cells.[230] Fas works by forming a 'Death Induced Signalling Cascade' (DISC) when activated by a ligand (as Fas is a cytoplasmic receptor). Resveratrol seems to modulate the levels of Fas and FasL, and thus modify the apoptotic response.[231][230] The CD65 pathway appears to be involed in colon cancer,[232] breast cancer,[233] and in lymphocytes.[234][44]

The NF-kB pathway, related to inflammation, has also been hypothesized to play a role in cancer progression and resveratrol, particularily in regard to skin, prostate, and lung carcinogenesis.[44] NF-kB is a regulatory gene that is stimulated by stress and inflammation, and induces cell proliferation and survival; it is frequently misregulated in cancers.[235][236] Resveratrol is able to suppress genes that are induced by NF-kB in response to inflammation and alleviate some cancer progression in some experimental models.[237][238]

Resveratrol may also downregulate cell-cycle related proteins such as Cyclin D1, Cyclin E and Cyclin-dependent kinase which can block the Akt pathway in rat smooth muscle cells,[239] bladder,[240] and liver cancer cells.[241] The PI3K/Akt pathway is related to some cancer progressions, and in general is related to cell survival, proliferation, and differentiation.

Low-dose resveratrol has been hypothesized to inhibit Wnt signaling, preventing nuclear localization of β-catenin.[242] This is implicated in colon carcinogenesis to a large degree.[44]

Alteration of the Bax:Bcl2 ratio has also been noted via an increase in Bax.[243]

There does seem to be some increaes in apoptosis after ingestion, as increases in caspase-3 (marker of apoptosis) have been noted to be increased by 39% after ingestion of 5g micronized resveratrol (large dose) in liver tissue in humans.[67]

13.3Cancers most affected by resveratrol

Due to the low systemic bioavailability of free resveratrol, and the relatively high concentrations seen in vitro to achieve anti-cancer effects, the cancers that resveratrol seems to affect most significantly are those that it can come into contact with without being absorbed.[44] It has shown promise on skin cancers when used topically[233] and shows efficacy against esophageal cancer when ingested orally in rats.[244]

13.4Breast Cancer

Resveratrol is being investigated in reducing the risk of breast cancers.

It has been seen to inhibit a positive feedback loop in breast cells via aromatase promotor regions;[245] as mentioned in the section on hormones, this occurs at around 25-50uM concentration.

Lots of possible mechanisms and promise, but human evidence is just starting to surface. It is too early to make a conclusion about resveratrol's interaction with cancer metabolism although it looks promising in most cases.

14Nutrient-Nutrient Interactions


Resveratrol's effects on fat metabolism (inhibiting adipogenesis) are synergistic with the phytonutrient Genistein, of which the effects of synergism were roughly double the sum of the parts.[246] At 50umol/L, Genistein increased apoptosis of preadipocytes and mature adipocytes by 46±9.2% and Resveratrol at 100umol/L by 46±7.9%, whereas the combination was measured at 242 ± 8.7%.[246] Similar synergism was seen in decreasing lipid accumulation, and the decreases in adipogenesis may have been through downregulation of PPARy.

The combination is also able to increase Jun-N-terminal phosporylation when no compound in isolation was able to, and increased fat lipolysis by 25.5±4.6% when no compound in isolation did.[246]


Quercetin was also synergistic with Resveratrol in protection of blood vessels[247] and inhibition of adipogenesis and slightly more potent than Genistein in the overall percent synergism.[248]

Combining all three bioflavonoids showed further synergism[249] and low-dosing the three can provide cumulatively similar benefits at cheaper costs.[250]


Leucine is the amino acid that appears to regulate muscle protein synthesis, and its metabolite HMB appears to directly activate SIRT1 in cell-free culture;[251] Leucine's other metabolite (KIC) and leucine itself also had this effect, and it was as potent as 2-10uM resveratrol with KIC being most potent and HMB being least.[251] Later, a study incubated leucine or HMB alongside resveratrol and noted synergism; modest fatty acid oxidation (+18%) was seen when no isolated compound induced it, and SIRT1 and SIRT3 activity was increased synergistically in adipocytes and skeletal muscle with the combination.[252]


Outside of biofalvonoids, Resveratrols anti-cancer effects can be augmented with coingestion of Indole-3-Carbinol[253][254]


Resveratrol is synergistic with curcumin in an animal model of lung cancer.[255] The mechanism may be related to anti-inflammatory effects, which have been found to be synergystic in a model of osteoarthritis.[237]


D-Glucaro-1,4-Lactone is produced during metabolism of Calcium-D-glucarate in humans[256] at about 30% of an oral dose of D-glucarate.[257]

This metabolite of D-glucarate at 0.5mM was able to cause a very low dose of resveratrol (0.1uM) to potently inhibit thrombin-induced aggregation and increase anti-oxidant potential; both compounds were ineffective at these dosages in isolation.[258] Synergism between these two molecules has also been noted in preventing skin cancer occurrence when ingested orally.[259]

Potentially synergistic for reducing blood clotting, currently the studies are not in living systems


β-1,3-Glucans are a class of polysaccharide that have traditionally been known to have immunostimulating effects.[260] In female BALB/c mice, a resveratrol complex sourced from Japanese Knotweed containing a small emodin and piceid content injected alongside a β-1,3-Glucan complex showed synergistic reactions in increasing CD4 and CD19 positive splenic cells and on splenic cell recovery after experimentally induced leucopenia.[260] β-1,3-Glucan, despite having no effect on IL-1 or IL-6, increased resveratrol's induction of these proteins synergistically; the combination was able to increase TNF-a levels when neither alone could.[260]


Resveratrol's ability to induce Heme-Oxygenase 1 (HO-1) is enhanced during incubation with Melatonin in neurons; this synergism was not accompanied by increased mRNA of HO-1, but inhibition of the ubiquitin-proteasome pathway.[149] Both molecules also exert neuroprotection and anti-oxidative properties, which are enhanced when together.[149] In addition to HO-1, these two molecules are synergistic via AMPK[148] and the Sirtuin system.[261]

Melatonin is also able to work synergistically with resveratrol at low doses in cardioprotection, as 2.3mg/L resveratrol and 75ng/mL melatonin in a model of animal myocardial infarction.[262] These doses parallel that found in red wine.

Melatonin and Resveratrol are also synergistic in a model of toxin-induced breast cancer progression in mice.[263]

14.9Grape Seed Extract

Grape seed extract is a blend of molecules, mostly proanthocyanidins, found in concord grapes; resveratrol may be a component of Grape Seed Extract.

In the presence of resvertrol, Grape Seed Extract has significantly more potency in destroying cancer cells via the p53 pathway.[264]

This synergism has also been noted in regards to preventing skin cancer in mice.[259]

15Safety and Toxicity


Resveratrol appears to be well-tolerated by rats continuously at dosages up to 100mg/kg bodyweight,[265] 400mg/kg bodyweight, and no adverse effects have been noted at 750mg/kg bodyweight trans-resveratrol.[211] Some adverse effects were noted in animals at 300mg/kg bodyweight, but may have been reflected of increased absorption kinetics by gavage feeding.[266] This may be of a concern to micronized resveratrol (with enhanced absorption) if taken in similar dosages.

The No Observable Adverse Effect Limit (NOAEL) of resveratrol appears to be 200mg/kg bodyweight in rats and 600mg/kg bodyweight in beagle dogs.[267]

In humans, up to 5g have been taken with no side effects outside of some intestinal upset[268] and nausea.[67] Micronization of resveratrol at this dosage showed the severity of symptoms decrease, indicating that nausea and intestinal upset are caused by resveratrol's poor bioavailability.[67]

A large amount of in vitro (in glass; not living bodies) evidence suggests that resveratrol can harbor toxic effects, but these studies are typically conducted at concentrations that are well beyond feasible with supplementation.


  1. ^ Davies M, Roulleau J. Statement of retraction. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkB. Free Radic Res. (2012)
  2. ^ Das S, et al. Resveratrol-mediated activation of cAMP response element-binding protein through adenosine A3 receptor by Akt-dependent and -independent pathways. J Pharmacol Exp Ther. (2005)
  3. ^ Gorbunov N, et al. Regeneration of infarcted myocardium with resveratrol-modified cardiac stem cells. J Cell Mol Med. (2012)
  4. ^ Juhasz B, Mukherjee S, Das DK. Hormetic response of resveratrol against cardioprotection. Exp Clin Cardiol. (2010)
  5. ^ Mukhopadhyay P, et al. Restoration of altered microRNA expression in the ischemic heart with resveratrol. PLoS One. (2010)
  6. ^ Mukherjee S, Dudley JI, Das DK. Dose-dependency of resveratrol in providing health benefits. Dose Response. (2010)
  7. ^ Das S, et al. Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol. (2005)
  8. ^ Das S, Fraga CG, Das DK. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB. Free Radic Res. (2006)
  9. ^ Gurusamy N, et al. Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infarcted myocardium. J Cell Mol Med. (2010)
  10. ^ Bertelli A, et al. Analgesic resveratrol. Antioxid Redox Signal. (2008)
  11. ^ Mukherjee S, et al. Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosol. Free Radic Biol Med. (2009)
  12. ^ Lekli I, Ray D, Das DK. Longevity nutrients resveratrol, wines and grapes. Genes Nutr. (2010)
  13. ^ Lekli I, et al. Co-ordinated autophagy with resveratrol and γ-tocotrienol confers synergetic cardioprotection. J Cell Mol Med. (2010)
  14. ^ Gurusamy N, et al. Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res. (2010)
  15. ^ a b Fujitaka K, et al. Modified resveratrol Longevinex improves endothelial function in adults with metabolic syndrome receiving standard treatment. Nutr Res. (2011)
  16. ^ Constant J. Alcohol, ischemic heart disease, and the French paradox. Coron Artery Dis. (1997)
  17. ^ Lippi G, et al. Moderate red wine consumption and cardiovascular disease risk: beyond the "French paradox". Semin Thromb Hemost. (2010)
  18. ^ Mezzano D, et al. Mediterranean diet, but not red wine, is associated with beneficial changes in primary haemostasis. Eur J Clin Nutr. (2003)
  19. ^ Mezzano D, et al. Complementary effects of Mediterranean diet and moderate red wine intake on haemostatic cardiovascular risk factors. Eur J Clin Nutr. (2001)
  20. ^ Zamora-Ros R, et al. Concentrations of resveratrol and derivatives in foods and estimation of dietary intake in a Spanish population: European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Br J Nutr. (2008)
  21. ^ Delmas D, et al. Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. Curr Drug Targets. (2006)
  22. ^ Timperio AM, et al. Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions. Plant Physiol Biochem. (2012)
  23. ^ Liang Z, et al. Characterization of polyphenolic metabolites in the seeds of Vitis germplasm. J Agric Food Chem. (2012)
  24. ^ Tříska J, et al. Separation and identification of highly fluorescent compounds derived from trans-resveratrol in the leaves of Vitis vinifera infected by Plasmopara viticola. Molecules. (2012)
  25. ^ Concentration of the Phytoalexin Resveratrol in Wine.
  26. ^ a b c d Huang X, Mazza G. Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J Chromatogr A. (2011)
  27. ^ Diaz LE, et al. Antioxidant, Antitubercular and Cytotoxic Activities of Piper imperiale. Molecules. (2012)
  28. ^ Poulose SM, et al. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J Agric Food Chem. (2012)
  29. ^ Sobolev VS, Cole RJ. trans-resveratrol content in commercial peanuts and peanut products. J Agric Food Chem. (1999)
  30. ^ Rius C, et al. Trans- but not cis-resveratrol impairs angiotensin-II-mediated vascular inflammation through inhibition of NF-κB activation and peroxisome proliferator-activated receptor-gamma upregulation. J Immunol. (2010)
  31. ^ Anisimova NY, et al. Trans-, cis-, and dihydro-resveratrol: a comparative study. Chem Cent J. (2011)
  32. ^ Orallo F. Comparative studies of the antioxidant effects of cis- and trans-resveratrol. Curr Med Chem. (2006)
  33. ^ Leiro J, et al. Effects of cis-resveratrol on inflammatory murine macrophages: antioxidant activity and down-regulation of inflammatory genes. J Leukoc Biol. (2004)
  34. ^ Fabbrocini G, et al. Resveratrol-containing gel for the treatment of acne vulgaris: a single-blind, vehicle-controlled, pilot study. Am J Clin Dermatol. (2011)
  35. ^ a b Belguendouz L, Fremont L, Linard A. Resveratrol inhibits metal ion-dependent and independent peroxidation of porcine low-density lipoproteins. Biochem Pharmacol. (1997)
  36. ^ Lappalainen Z. Sirtuins: a family of proteins with implications for human performance and exercise physiology. Res Sports Med. (2011)
  37. ^ Rahman S, Islam R. Mammalian Sirt1: insights on its biological functions. Cell Commun Signal. (2011)
  38. ^ Milner J. Cellular regulation of SIRT1. Curr Pharm Des. (2009)
  39. ^ Verdin E, et al. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. (2010)
  40. ^ Li X, Kazgan N. Mammalian sirtuins and energy metabolism. Int J Biol Sci. (2011)
  41. ^ White AT, Schenk S. NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab. (2012)
  42. ^ Kelly G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern Med Rev. (2010)
  43. ^ Kelly GS. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2. Altern Med Rev. (2010)
  44. ^ a b c d e f g Agarwal B, Baur JA. Resveratrol and life extension. Ann N Y Acad Sci. (2011)
  45. ^ Howitz KT, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. (2003)
  46. ^ Kaeberlein M, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. (2005)
  47. ^ Pacholec M, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. (2010)
  48. ^ Beher D, et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des. (2009)
  49. ^ SIRT1 activation by small molecules - kinetic and biophysical evidence for direct interaction of enzyme and activator.
  50. ^ Hawley SA, et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. (2010)
  51. ^ AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.
  52. ^ Park CE, et al. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med. (2007)
  53. ^ Resveratrol stimulates AMP kinase activity in neurons.
  54. ^ Cantó C, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. (2009)
  55. ^ a b c Price NL, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. (2012)
  56. ^ Lan F, et al. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. (2008)
  57. ^ Hou X, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. (2008)
  58. ^ a b c Park SJ, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. (2012)
  59. ^ Feige JN, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. (2008)
  60. ^ a b Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle.
  61. ^ a b Gerhart-Hines Z, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. (2007)
  62. ^ Rodgers JT, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. (2005)
  63. ^ Jäger S, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. (2007)
  64. ^ Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. (2011)
  65. ^ a b c d Walle T, et al. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. (2004)
  66. ^ a b c d Cottart CH, et al. Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res. (2010)
  67. ^ a b c d e f g h i j Howells LM, et al. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res (Phila). (2011)
  68. ^ a b c Almeida L, et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res. (2009)
  69. ^ Chaudhary A, et al. Multiple-dose lorazepam kinetics: shuttling of lorazepam glucuronide between the circulation and the gut during day- and night-time dosing intervals in response to feeding. J Pharmacol Exp Ther. (1993)
  70. ^ Metabolism and Disposition of Resveratrol in Rats: Extent of Absorption, Glucuronidation, and Enterohepatic Recirculation Evidenced by a Linked-Rat Model.
  71. ^ Ho KJ. Circadian rhythmic hepatic biliary flow, constituents, concentrations and excretory rates in patients after cholecystectomy. Chronobiologia. (1994)
  72. ^ Vaz-da-Silva M, et al. Effect of food on the pharmacokinetic profile of trans-resveratrol. Int J Clin Pharmacol Ther. (2008)
  73. ^ la Porte C, et al. Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects. Clin Pharmacokinet. (2010)
  74. ^ De Santi C, et al. Sulphation of resveratrol, a natural product present in grapes and wine, in the human liver and duodenum. Xenobiotica. (2000)
  75. ^ Soleas GJ, Yan J, Goldberg DM. Measurement of trans-resveratrol, (+)-catechin, and quercetin in rat and human blood and urine by gas chromatography with mass selective detection. Methods Enzymol. (2001)
  76. ^ Ultrasensitive assay for three polyphenols (catechin, quercetin and resveratrol) and their conjugates in biological fluids utilizing gas chromatography with mass selective detection.
  77. ^ a b Smoliga JM, Baur JA, Hausenblas HA. Resveratrol and health--a comprehensive review of human clinical trials. Mol Nutr Food Res. (2011)
  78. ^ a b De Santi C, et al. Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids. Xenobiotica. (2000)
  79. ^ Pacifici GM. Inhibition of human liver and duodenum sulfotransferases by drugs and dietary chemicals: a review of the literature. Int J Clin Pharmacol Ther. (2004)
  80. ^ a b c d Boocock DJ, et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Biomarkers Prev. (2007)
  81. ^ a b c Resveratrol Modulates Drug- and Carcinogen-Metabolizing Enzymes in a Healthy Volunteer Study.
  82. ^ Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers.
  83. ^ Brown VA, et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res. (2010)
  84. ^ a b Goldberg DM, Yan J, Soleas GJ. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem. (2003)
  85. ^ Gresele P, et al. Resveratrol, at concentrations attainable with moderate wine consumption, stimulates human platelet nitric oxide production. J Nutr. (2008)
  86. ^ Soleas GJ, Yan J, Goldberg DM. Ultrasensitive assay for three polyphenols (catechin, quercetin and resveratrol) and their conjugates in biological fluids utilizing gas chromatography with mass selective detection. J Chromatogr B Biomed Sci Appl. (2001)
  87. ^ Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res. (2005)
  88. ^ A Global Survey of Trans-Resveratrol Concentrations in Commercial Wines.
  89. ^ a b c Wu JM, Hsieh TC, Wang Z. Cardioprotection by resveratrol: a review of effects/targets in cultured cells and animal tissues. Am J Cardiovasc Dis. (2011)
  90. ^ Khan MA, Muzammil S, Musarrat J. Differential binding of tetracyclines with serum albumin and induced structural alterations in drug-bound protein. Int J Biol Macromol. (2002)
  91. ^ a b Jannin B, et al. Transport of resveratrol, a cancer chemopreventive agent, to cellular targets: plasmatic protein binding and cell uptake. Biochem Pharmacol. (2004)
  92. ^ Belguendouz L, Frémont L, Gozzelino MT. Interaction of transresveratrol with plasma lipoproteins. Biochem Pharmacol. (1998)
  93. ^ Curry S, Brick P, Franks NP. Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim Biophys Acta. (1999)
  94. ^ a b c Lançon A, et al. Human hepatic cell uptake of resveratrol: involvement of both passive diffusion and carrier-mediated process. Biochem Biophys Res Commun. (2004)
  95. ^ a b c Wang Q, et al. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res. (2002)
  96. ^ a b Bertelli A, et al. Plasma and tissue resveratrol concentrations and pharmacological activity. Drugs Exp Clin Res. (1998)
  97. ^ a b Vitrac X, et al. Distribution of (14C)-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration. Life Sci. (2003)
  98. ^ Camont L, et al. Radical-induced oxidation of trans-resveratrol. Biochimie. (2012)
  99. ^ a b c Bass TM, et al. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev. (2007)
  100. ^ Wang C, et al. The effect of resveratrol on lifespan depends on both gender and dietary nutrient composition in Drosophila melanogaster. Age (Dordr). (2011)
  101. ^ Bauer JH, et al. Expression of dominant-negative Dmp53 in the adult fly brain inhibits insulin signaling. Proc Natl Acad Sci U S A. (2007)
  102. ^ Bauer JH, et al. dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster. Aging (Albany NY). (2009)
  103. ^ a b c d e f Antosh M, et al. Comparative transcriptional pathway bioinformatic analysis of dietary restriction, Sir2, p53 and resveratrol life span extension in Drosophila. Cell Cycle. (2011)
  104. ^ a b Flatt T, Tu MP, Tatar M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays. (2005)
  105. ^ a b Chandrashekara KT, Shakarad MN. Aloe vera or resveratrol supplementation in larval diet delays adult aging in the fruit fly, Drosophila melanogaster. J Gerontol A Biol Sci Med Sci. (2011)
  106. ^ Frankel S, Ziafazeli T, Rogina B. dSir2 and longevity in Drosophila. Exp Gerontol. (2011)
  107. ^ Labbé A, et al. Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for Werner syndrome. J Gerontol A Biol Sci Med Sci. (2011)
  108. ^ Miller RA, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. (2011)
  109. ^ Pearson KJ, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. (2008)
  110. ^ Barger JL, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One. (2008)
  111. ^ Baur JA, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. (2006)
  112. ^ Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation.
  113. ^ a b Chang Y, Wang SJ. Inhibitory effect of glutamate release from rat cerebrocortical nerve terminals by resveratrol. Neurochem Int. (2009)
  114. ^ a b c Gao ZB, Chen XQ, Hu GY. Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus. Brain Res. (2006)
  115. ^ Li M, et al. Resveratrol inhibits neuronal discharges in rat hippocampal CA1 area. Sheng Li Xue Bao. (2005)
  116. ^ Gozlan H, Ben-Ari Y. NMDA receptor redox sites: are they targets for selective neuronal protection. Trends Pharmacol Sci. (1995)
  117. ^ Abele R, et al. Disulfide bonding and cysteine accessibility in the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluRD. Implications for redox modulation of glutamate receptors. J Biol Chem. (1998)
  118. ^ Zhang LP, et al. Effect of resveratrol on L-type calcium current in rat ventricular myocytes. Acta Pharmacol Sin. (2006)
  119. ^ Moldzio R, et al. Protective effects of resveratrol on glutamate-induced damages in murine brain cultures. J Neural Transm. (2013)
  120. ^ Lee JG, et al. Combined treatment with capsaicin and resveratrol enhances neuroprotection against glutamate-induced toxicity in mouse cerebral cortical neurons. Food Chem Toxicol. (2012)
  121. ^ Saleh MC, Connell BJ, Saleh TM. Resveratrol preconditioning induces cellular stress proteins and is mediated via NMDA and estrogen receptors. Neuroscience. (2010)
  122. ^ Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. (1988)
  123. ^ Lin CH, Chen PS, Gean PW. Glutamate preconditioning prevents neuronal death induced by combined oxygen-glucose deprivation in cultured cortical neurons. Eur J Pharmacol. (2008)
  124. ^ Wang Q, et al. Resveratrol protects against neurotoxicity induced by kainic acid. Neurochem Res. (2004)
  125. ^ Gupta YK, Briyal S, Chaudhary G. Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. Pharmacol Biochem Behav. (2002)
  126. ^ Shetty AK. Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacol Ther. (2011)
  127. ^ Wu Z, et al. Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res. (2009)
  128. ^ Friedman LK, et al. Lack of resveratrol neuroprotection in developing rats treated with kainic acid. Neuroscience. (2013)
  129. ^ Friedman LK, et al. Developmental regulation of glutamate and GABA(A) receptor gene expression in rat hippocampus following kainate-induced status epilepticus. Dev Neurosci. (1997)
  130. ^ Shen CH, et al. Intrathecal etanercept partially restores morphine's antinociception in morphine-tolerant rats via attenuation of the glutamatergic transmission. Anesth Analg. (2011)
  131. ^ Shimoyama N, et al. An antisense oligonucleotide to the N-methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance. J Pharmacol Exp Ther. (2005)
  132. ^ a b Tsai RY, et al. Resveratrol regulates N-methyl-D-aspartate receptor expression and suppresses neuroinflammation in morphine-tolerant rats. Anesth Analg. (2012)
  133. ^ Cousins SL, Stephenson FA. Identification of N-methyl-D-aspartic acid (NMDA) receptor subtype-specific binding sites that mediate direct interactions with scaffold protein PSD-95. J Biol Chem. (2012)
  134. ^ Magistretti PJ. Neuron-glia metabolic coupling and plasticity. J Exp Biol. (2006)
  135. ^ Araque A. Astrocytes process synaptic information. Neuron Glia Biol. (2008)
  136. ^ Araque A, Carmignoto G, Haydon PG. Dynamic signaling between astrocytes and neurons. Annu Rev Physiol. (2001)
  137. ^ Araque A, et al. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. (1999)
  138. ^ Hertz L. Glutamate, a neurotransmitter--and so much more. A synopsis of Wierzba III. Neurochem Int. (2006)
  139. ^ Matés JM, et al. Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol. (2002)
  140. ^ McKenna MC. The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res. (2007)
  141. ^ Quincozes-Santos A, Gottfried C. Resveratrol modulates astroglial functions: neuroprotective hypothesis. Ann N Y Acad Sci. (2011)
  142. ^ a b dos Santos AQ, et al. Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys. (2006)
  143. ^ de Almeida LM, et al. Resveratrol increases glutamate uptake, glutathione content, and S100B secretion in cortical astrocyte cultures. Cell Mol Neurobiol. (2007)
  144. ^ a b Bobermin LD, et al. Resveratrol prevents ammonia toxicity in astroglial cells. PLoS One. (2012)
  145. ^ Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol. (2002)
  146. ^ Leite MC, et al. Ammonia-induced alteration in S100B secretion in astrocytes is not reverted by creatine addition. Brain Res Bull. (2006)
  147. ^ Lemberg A, Fernández MA. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann Hepatol. (2009)
  148. ^ a b Kwon KJ, et al. Melatonin Potentiates the Neuroprotective Properties of Resveratrol Against Beta-Amyloid-Induced Neurodegeneration by Modulating AMP-Activated Protein Kinase Pathways. J Clin Neurol. (2010)
  149. ^ a b c Kwon KJ, et al. Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J Pineal Res. (2011)
  150. ^ Porquet D, et al. Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8. Age (Dordr). (2012)
  151. ^ a b Kao CL, et al. Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J Atheroscler Thromb. (2010)
  152. ^ Zou J, et al. Effects of resveratrol on oxidative modification of human low density lipoprotein. Chin Med J (Engl). (2000)
  153. ^ Zou JG, et al. Resveratrol inhibits copper ion-induced and azo compound-initiated oxidative modification of human low density lipoprotein. Biochem Mol Biol Int. (1999)
  154. ^ a b c Wallerath T, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation. (2002)
  155. ^ Kleinert H, et al. Estrogens increase transcription of the human endothelial NO synthase gene: analysis of the transcription factors involved. Hypertension. (1998)
  156. ^ Thum T, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes. (2007)
  157. ^ a b Li H, Förstermann U. Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des. (2009)
  158. ^ Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. (2006)
  159. ^ Li H, et al. Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol. (2006)
  160. ^ Spanier G, et al. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J Physiol Pharmacol. (2009)
  161. ^ Xia N, et al. Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice. J Pharmacol Exp Ther. (2010)
  162. ^ Leonard SS, et al. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun. (2003)
  163. ^ Orallo F, et al. The possible implication of trans-Resveratrol in the cardioprotective effects of long-term moderate wine consumption. Mol Pharmacol. (2002)
  164. ^ a b Resveratrol Increases Nitric Oxide Synthase, Induces Accumulation of p53 and p21WAF1/CIP1, and Suppresses Cultured Bovine Pulmonary Artery EndothelialCell Proliferation by Perturbing Progression through S and G2.
  165. ^ Different Mechanisms of Endothelial Dysfunction With Aging and Hypertension in Rat Aorta.
  166. ^ Rush JW, Denniss SG, Graham DA. Vascular nitric oxide and oxidative stress: determinants of endothelial adaptations to cardiovascular disease and to physical activity. Can J Appl Physiol. (2005)
  167. ^ a b c d Rush JW, et al. Chronic resveratrol enhances endothelium-dependent relaxation but does not alter eNOS levels in aorta of spontaneously hypertensive rats. Exp Biol Med (Maywood). (2007)
  168. ^ a b Mizutani K, et al. Resveratrol attenuates ovariectomy-induced hypertension and bone loss in stroke-prone spontaneously hypertensive rats. J Nutr Sci Vitaminol (Tokyo). (2000)
  169. ^ Wang Z, et al. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts. Biochem Biophys Res Commun. (2006)
  170. ^ Dealcoholized Red Wine Decreases Systolic and Diastolic Blood Pressure and Increases Plasma Nitric Oxide.
  171. ^ Hsieh TC, et al. Inhibition of melanoma cell proliferation by resveratrol is correlated with upregulation of quinone reductase 2 and p53. Biochem Biophys Res Commun. (2005)
  172. ^ Wang Z, et al. Identification and purification of resveratrol targeting proteins using immobilized resveratrol affinity chromatography. Biochem Biophys Res Commun. (2004)
  173. ^ Buryanovskyy L, et al. Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry. (2004)
  174. ^ a b de Gaetano G, et al. Antithrombotic effect of polyphenols in experimental models: a mechanism of reduced vascular risk by moderate wine consumption. Ann N Y Acad Sci. (2002)
  175. ^ a b c d e f g h Timmers S, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. (2011)
  176. ^ a b Brasnyó P, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr. (2011)
  177. ^ Resveratrol Supplementation Does Not Improve Metabolic Function in Nonobese Women with Normal Glucose Tolerance.
  178. ^ Ku CR, et al. Resveratrol prevents streptozotocin-induced diabetes by inhibiting the apoptosis of pancreatic β-cell and the cleavage of poly (ADP-ribose) polymerase. Endocr J. (2012)
  179. ^ Zhang J, et al. The protective effect of resveratrol on islet insulin secretion and morphology in mice on a high-fat diet. Diabetes Res Clin Pract. (2012)
  180. ^ a b Minakawa M, et al. Hypoglycemic effect of resveratrol in type 2 diabetic model db/db mice and its actions in cultured L6 myotubes and RIN-5F pancreatic β-cells. J Clin Biochem Nutr. (2011)
  181. ^ Marchal J, et al. Effects of Chronic Calorie Restriction or Dietary Resveratrol Supplementation on Insulin Sensitivity Markers in a Primate, Microcebus murinus. PLoS One. (2012)
  182. ^ Burgess TA, et al. Improving glucose metabolism with resveratrol in a swine model of metabolic syndrome through alteration of signaling pathways in the liver and skeletal muscle. Arch Surg. (2011)
  183. ^ Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ.
  184. ^ Umek RM, Friedman AD, McKnight SL. CCAAT-enhancer binding protein: a component of a differentiation switch. Science. (1991)
  185. ^ Rayalam S, et al. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res. (2008)
  186. ^ a b c Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes.
  187. ^ Szkudelska K, Nogowski L, Szkudelski T. Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol. (2009)
  188. ^ Baile CA, et al. Effect of resveratrol on fat mobilization. Ann N Y Acad Sci. (2011)
  189. ^ a b Fischer-Posovszky P, et al. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am J Clin Nutr. (2010)
  190. ^ SIRT3, a Mitochondrial Sirtuin Deacetylase, Regulates Mitochondrial Function and Thermogenesis in Brown Adipocytes.
  191. ^ Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.
  192. ^ AMP-Activated Protein Kinase–Deficient Mice Are Resistant to the Metabolic Effects of Resveratrol.
  193. ^ a b c Dolinsky VW, et al. Improvements in Skeletal Muscle Strength and Cardiac Function Induced by Resveratrol Contribute to Enhanced Exercise Performance in Rats. J Physiol. (2012)
  194. ^ a b Tomasello B, et al. Double-Face Activity of Resveratrol in Voluntary Runners: Assessment of DNA Damage by Comet Assay. J Med Food. (2012)
  195. ^ de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans. (2007)
  196. ^ a b Liu M, Liu F. Resveratrol inhibits mTOR signaling by targeting DEPTOR. Commun Integr Biol. (2011)
  197. ^ Liu M, et al. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J Biol Chem. (2010)
  198. ^ Rajapakse AG, et al. Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: inhibition by resveratrol. PLoS One. (2011)
  199. ^ Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. (2010)
  200. ^ Schreiner CE, et al. Resveratrol blocks Akt activation in angiotensin II- or EGF-stimulated vascular smooth muscle cells in a redox-independent manner. Cardiovasc Res. (2011)
  201. ^ Haider UG, et al. Resveratrol suppresses angiotensin II-induced Akt/protein kinase B and p70 S6 kinase phosphorylation and subsequent hypertrophy in rat aortic smooth muscle cells. Mol Pharmacol. (2002)
  202. ^ Drummond MJ, et al. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol. (2009)
  203. ^ Jackson JR, Ryan MJ, Alway SE. Long-term supplementation with resveratrol alleviates oxidative stress but does not attenuate sarcopenia in aged mice. J Gerontol A Biol Sci Med Sci. (2011)
  204. ^ Momken I, et al. Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J. (2011)
  205. ^ Marzetti E, et al. Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty - a mini-review. Gerontology. (2012)
  206. ^ Jian B, et al. Resveratrol Improves Cardiac Contractility following Trauma-Hemorrhage by Modulating Sirt1. Mol Med. (2012)
  207. ^ a b Lasse Gliemann, et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol. (2013)
  208. ^ Smoliga JM, Blanchard OL. Recent data do not provide evidence that resveratrol causes 'mainly negative' or 'adverse' effects on exercise training in humans. J Physiol. (2013)
  209. ^ Gliemann L, et al. Reply from Lasse Gliemann, Jakob Schmidt, Jesper Olesen, Rasmus Sjørup Biensø, Sebastian Louis Peronard, Simon Udsen Grandjean, Stefan Peter Mortensen, Michael Nyberg, Jens Bangsbo, Henriette Pilegaard and Ylva Hellsten. J Physiol. (2013)
  210. ^ Continued Postnatal Administration of Resveratrol Prevents Diet-Induced Metabolic Syndrome in Rat Offspring Born Growth Restricted.
  211. ^ a b Lagouge M, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. (2006)
  212. ^ a b Scribbans TD1, et al. Resveratrol supplementation does not augment performance adaptations or fibre-type-specific responses to high-intensity interval training in humans. Appl Physiol Nutr Metab. (2014)
  213. ^ Gomez-Cabrera MC1, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. (2008)
  214. ^ Paulsen G1, et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol. (2014)
  215. ^ Bäckesjö CM, et al. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. Cells Tissues Organs. (2009)
  216. ^ Resveratrol Stimulates the Proliferation and Differentiation of Osteoblastic MC3T3-E1 Cells.
  217. ^ Preventing bone loss & weight gain with combinations of Vitamin D & phytochemicals.
  218. ^ Morita Y, et al. Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary. Reprod Biol Endocrinol. (2012)
  219. ^ Chen YC, et al. Effects of genistein, resveratrol, and quercetin on steroidogenesis and proliferation of MA-10 mouse Leydig tumor cells. J Endocrinol. (2007)
  220. ^ a b c Wang Y, et al. The red wine polyphenol resveratrol displays bilevel inhibition on aromatase in breast cancer cells. Toxicol Sci. (2006)
  221. ^ a b Wang Y, Leung LK. Pharmacological concentration of resveratrol suppresses aromatase in JEG-3 cells. Toxicol Lett. (2007)
  222. ^ Canistro D, et al. Alteration of xenobiotic metabolizing enzymes by resveratrol in liver and lung of CD1 mice. Food Chem Toxicol. (2009)
  223. ^ a b Delmas D, et al. Inhibitory effect of resveratrol on the proliferation of human and rat hepatic derived cell lines. Oncol Rep. (2000)
  224. ^ Sun ZJ, et al. Anti-hepatoma activity of resveratrol in vitro. World J Gastroenterol. (2002)
  225. ^ Resveratrol Decreases Noise-Induced Cyclooxygenase-2 Expression in the Rat Cochlea.
  226. ^ a b Leone S, et al. Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction. Cancer Lett. (2010)
  227. ^ De Salvia R, et al. Resveratrol affects in a different way primary versus fixed DNA damage induced by H(2)O(2) in mammalian cells in vitro. Toxicol Lett. (2002)
  228. ^ Fukuhara K, Miyata N. Resveratrol as a new type of DNA-cleaving agent. Bioorg Med Chem Lett. (1998)
  229. ^ Transient Transfection of a Wild-Type p53 Gene Triggers Resveratrol-Induced Apoptosis in Cancer Cells.
  230. ^ a b Delmas D, et al. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem. (2003)
  231. ^ Pervaiz S. Resveratrol--from the bottle to the bedside. Leuk Lymphoma. (2001)
  232. ^ Wenzel E, et al. Bioactivity and metabolism of trans-resveratrol orally administered to Wistar rats. Mol Nutr Food Res. (2005)
  233. ^ a b Resveratrol: A Review of Pre-clinical Studies for Human Cancer Prevention.
  234. ^ Gao X, et al. Disparate in vitro and in vivo antileukemic effects of resveratrol, a natural polyphenolic compound found in grapes. J Nutr. (2002)
  235. ^ Oncogenic Activation of NF-κB.
  236. ^ Kucharczak J, et al. To be, or not to be: NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene. (2003)
  237. ^ a b Csaki C, Mobasheri A, Shakibaei M. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis. Arthritis Res Ther. (2009)
  238. ^ Benitez DA, et al. Regulation of cell survival by resveratrol involves inhibition of NF kappa B-regulated gene expression in prostate cancer cells. Prostate. (2009)
  239. ^ Park ES, et al. Pterostilbene, a natural dimethylated analog of resveratrol, inhibits rat aortic vascular smooth muscle cell proliferation by blocking Akt-dependent pathway. Vascul Pharmacol. (2010)
  240. ^ Bai Y, et al. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo. Cancer Sci. (2010)
  241. ^ Parekh P, et al. Downregulation of cyclin D1 is associated with decreased levels of p38 MAP kinases, Akt/PKB and Pak1 during chemopreventive effects of resveratrol in liver cancer cells. Exp Toxicol Pathol. (2011)
  242. ^ Hope C, et al. Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Mol Nutr Food Res. (2008)
  243. ^ Bishayee A, Dhir N. Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosis. Chem Biol Interact. (2009)
  244. ^ Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by resveratrol.
  245. ^ Wang Y, Ye L, Leung LK. A positive feedback pathway of estrogen biosynthesis in breast cancer cells is contained by resveratrol. Toxicology. (2008)
  246. ^ a b c Resveratrol Potentiates Genistein's Antiadipogenic and Proapoptotic Effects in 3T3-L1 Adipocytes.
  247. ^ Kleinedler JJ, et al. Synergistic effect of resveratrol and quercetin released from drug-eluting polymer coatings for endovascular devices. J Biomed Mater Res B Appl Biomater. (2011)
  248. ^ Yang JY, et al. Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci. (2008)
  249. ^ Park HJ, et al. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food. (2008)
  250. ^ Rayalam S, Della-Fera MA, Baile CA. Synergism between resveratrol and other phytochemicals: implications for obesity and osteoporosis. Mol Nutr Food Res. (2011)
  251. ^ a b Bruckbauer A, Zemel MB. Effects of dairy consumption on SIRT1 and mitochondrial biogenesis in adipocytes and muscle cells. Nutr Metab (Lond). (2011)
  252. ^ Bruckbauer A, et al. Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. Nutr Metab (Lond). (2012)
  253. ^ Raj MH, et al. Synergistic action of dietary phyto-antioxidants on survival and proliferation of ovarian cancer cells. Gynecol Oncol. (2008)
  254. ^ Trusov NV, et al. Effects of combined treatment with resveratrol and indole-3-carbinol. Bull Exp Biol Med. (2010)
  255. ^ Malhotra A, Nair P, Dhawan DK. Curcumin and resveratrol synergistically stimulate p21 and regulate cox-2 by maintaining adequate zinc levels during lung carcinogenesis. Eur J Cancer Prev. (2011)
  256. ^ Walaszek Z. Potential use of D-glucaric acid derivatives in cancer prevention. Cancer Lett. (1990)
  257. ^ Heerdt AS, Young CW, Borgen PI. Calcium glucarate as a chemopreventive agent in breast cancer. Isr J Med Sci. (1995)
  258. ^ Olas B, Saluk-Juszczak J, Wachowicz B. D-glucaro 1,4-lactone and resveratrol as antioxidants in blood platelets. Cell Biol Toxicol. (2008)
  259. ^ a b Kowalczyk MC, et al. Synergistic effects of combined phytochemicals and skin cancer prevention in SENCAR mice. Cancer Prev Res (Phila). (2010)
  260. ^ a b c Vetvicka V, et al. Glucan and resveratrol complex--possible synergistic effects on immune system. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. (2007)
  261. ^ Cristòfol R, et al. Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. J Pineal Res. (2012)
  262. ^ Lamont KT, et al. Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection. J Pineal Res. (2011)
  263. ^ Kisková T, et al. A combination of resveratrol and melatonin exerts chemopreventive effects in N-methyl-N-nitrosourea-induced rat mammary carcinogenesis. Eur J Cancer Prev. (2012)
  264. ^ Radhakrishnan S, et al. Resveratrol potentiates grape seed extract induced human colon cancer cell apoptosis. Front Biosci (Elite Ed). (2011)
  265. ^ Therapeutic potential of resveratrol: the in vivo evidence.
  266. ^ Edwards JA, et al. Safety of resveratrol with examples for high purity, trans-resveratrol, resVida(®). Ann N Y Acad Sci. (2011)
  267. ^ Johnson WD, et al. Subchronic oral toxicity and cardiovascular safety pharmacology studies of resveratrol, a naturally occurring polyphenol with cancer preventive activity. Food Chem Toxicol. (2011)
  268. ^ Patel KR, et al. Clinical trials of resveratrol. Ann N Y Acad Sci. (2011)
  269. Magyar K, et al. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin Hemorheol Microcirc. (2012)
  270. Kennedy DO, et al. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Am J Clin Nutr. (2010)
  271. Zhu W, et al. Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr Cancer. (2012)
  272. Crandall JP, et al. Pilot Study of Resveratrol in Older Adults With Impaired Glucose Tolerance. J Gerontol A Biol Sci Med Sci. (2012)