Lifespan Extension

Last Updated: September 14 2021

Longevity (as it applies to supplementation) is the concept of promoting or preserving youth and vitality via delaying the inherent human aging process. Research into this topic is young and speculative, but generally centers around autophagy.


Longevity is a term used to refer to a preservation of vitality and physical/mental robustness over a prolonged period of time, perhaps exceeding the average lifespan of other humans. The pursuit for longevity tends to look for both chronological enhancement (life extension) and either preserving or enhancing function during this chronological enhancement (vitality) and attempts to capitalize on both 'adding years to life' as well as 'adding life to years'.

Longevity research begins with experimentation on yeast, nematodes (C. Elegans), and fruit flies (drosophilia) due to their short life cycles. Fluctuations in the human lifespan would take an impractical 90 years to test; C. Elegans' 90-day lifespan serves as a convenient alternative for initial longevity trials. Once mechanisms are established in these shorter research models, studies are conducted in mammalian species such as mice and rats. Human studies are nonexistent for practical reasons.

Additionally, caloric restriction (40-50% of standard caloric intake) appears to reliably produce life extension in all tested non-human subjects and case studies (anecdotes) of humans on caloric restriction suggest it delays the aging phenotype; due to the high possibility that caloric restriction is able to enhance lifespan, many mechanisms and phenomena are considered to be 'caloric restriction related' or 'caloric restriction independent'.

The following summary covers molecular pathways and targets of interest, which are useful as they are the druggable targets that one would consider when supplementing to promote longevity. 'Phenomena of interest' refer to the actual aging process, and attempts to tie these phenomena into the druggable targets.

Don't miss out on the latest research

1.^Zakian VATelomeres: beginning to understand the endScience.(1995 Dec 8)
2.^Harley CB, Villeponteau BTelomeres and telomerase in aging and cancerCurr Opin Genet Dev.(1995 Apr)
6.^Kiss T, Fayet-Lebaron E, Jády BEBox H/ACA small ribonucleoproteinsMol Cell.(2010 Mar 12)
8.^Raices M, Maruyama H, Dillin A, Karlseder JUncoupling of longevity and telomere length in C. elegansPLoS Genet.(2005 Sep)
9.^Bernardes de Jesus B, Schneeberger K, Vera E, Tejera A, Harley CB, Blasco MAThe telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidenceAging Cell.(2011 Aug)
11.^Mukhopadhyay A, Oh SW, Tissenbaum HAWorming pathways to and from DAF-16/FOXOExp Gerontol.(2006 Oct)
12.^Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun GThe Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegansNature.(1997 Oct 30)
15.^Choi SL, Kim SJ, Lee KT, Kim J, Mu J, Birnbaum MJ, Soo Kim S, Ha JThe regulation of AMP-activated protein kinase by H(2)O(2)Biochem Biophys Res Commun.(2001 Sep 14)
16.^Sandström ME, Zhang SJ, Bruton J, Silva JP, Reid MB, Westerblad H, Katz ARole of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscleJ Physiol.(2006 Aug 15)
17.^Wolff S, Ma H, Burch D, Maciel GA, Hunter T, Dillin ASMK-1, an essential regulator of DAF-16-mediated longevityCell.(2006 Mar 10)
18.^McElwee J, Bubb K, Thomas JHTranscriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16Aging Cell.(2003 Apr)
20.^Lee SS, Kennedy S, Tolonen AC, Ruvkun GDAF-16 target genes that control C. elegans life-span and metabolismScience.(2003 Apr 25)
21.^Oh SW, Mukhopadhyay A, Dixit BL, Raha T, Green MR, Tissenbaum HAIdentification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitationNat Genet.(2006 Feb)
22.^Kaestner KHThe FoxA factors in organogenesis and differentiationCurr Opin Genet Dev.(2010 Oct)
23.^Horner MA, Quintin S, Domeier ME, Kimble J, Labouesse M, Mango SEpha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegansGenes Dev.(1998 Jul 1)
24.^Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin APHA-4/Foxa mediates diet-restriction-induced longevity of C. elegansNature.(2007 May 31)
27.^Gao N, Zhang J, Rao MA, Case TC, Mirosevich J, Wang Y, Jin R, Gupta A, Rennie PS, Matusik RJThe role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genesMol Endocrinol.(2003 Aug)
28.^Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown MFoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcriptionCell.(2008 Mar 21)
29.^Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox EA, Silver PA, Brown MChromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1Cell.(2005 Jul 15)
30.^Bernardo GM, Lozada KL, Miedler JD, Harburg G, Hewitt SC, Mosley JD, Godwin AK, Korach KS, Visvader JE, Kaestner KH, Abdul-Karim FW, Montano MM, Keri RAFOXA1 is an essential determinant of ERalpha expression and mammary ductal morphogenesisDevelopment.(2010 Jun)
31.^Zhang L, Rubins NE, Ahima RS, Greenbaum LE, Kaestner KHFoxa2 integrates the transcriptional response of the hepatocyte to fastingCell Metab.(2005 Aug)
32.^Bochkis IM, Schug J, Rubins NE, Chopra AR, O'Malley BW, Kaestner KHFoxa2-dependent hepatic gene regulatory networks depend on physiological statePhysiol Genomics.(2009 Jul 9)
33.^Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang RA C. elegans mutant that lives twice as long as wild typeNature.(1993 Dec 2)
35.^Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge LExtension of life-span by loss of CHICO, a Drosophila insulin receptor substrate proteinScience.(2001 Apr 6)
36.^Clancy DJ, Gems D, Hafen E, Leevers SJ, Partridge LDietary restriction in long-lived dwarf fliesScience.(2002 Apr 12)
39.^Liang B, Moussaif M, Kuan CJ, Gargus JJ, Sze JYSerotonin targets the DAF-16/FOXO signaling pathway to modulate stress responsesCell Metab.(2006 Dec)
41.^Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DHInsulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40Nat Cell Biol.(2007 Mar)
42.^Inoki K, Li Y, Zhu T, Wu J, Guan KLTSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signallingNat Cell Biol.(2002 Sep)
43.^Potter CJ, Pedraza LG, Xu TAkt regulates growth by directly phosphorylating Tsc2Nat Cell Biol.(2002 Sep)
44.^Wullschleger S, Loewith R, Hall MNTOR signaling in growth and metabolismCell.(2006 Feb 10)
45.^Long X, Spycher C, Han ZS, Rose AM, Müller F, Avruch JTOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translationCurr Biol.(2002 Sep 3)
48.^Wang T, Blumhagen R, Lao U, Kuo Y, Edgar BALST8 regulates cell growth via target-of-rapamycin complex 2 (TORC2)Mol Cell Biol.(2012 Jun)
49.^Evans DS, Kapahi P, Hsueh WC, Kockel LTOR signaling never gets old: aging, longevity and TORC1 activityAgeing Res Rev.(2011 Apr)
50.^Zoncu R, Efeyan A, Sabatini DMmTOR: from growth signal integration to cancer, diabetes and ageingNat Rev Mol Cell Biol.(2011 Jan)
52.^Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch JRheb binds and regulates the mTOR kinaseCurr Biol.(2005 Apr 26)
53.^Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BARheb promotes cell growth as a component of the insulin/TOR signalling networkNat Cell Biol.(2003 Jun)
54.^Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P, Breuer S, Thomas G, Hafen ERheb is an essential regulator of S6K in controlling cell growth in DrosophilaNat Cell Biol.(2003 Jun)
55.^Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan DRheb is a direct target of the tuberous sclerosis tumour suppressor proteinsNat Cell Biol.(2003 Jun)
59.^Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas GMetformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent mannerCell Metab.(2010 May 5)
60.^Lucanic M, Held JM, Vantipalli MC, Klang IM, Graham JB, Gibson BW, Lithgow GJ, Gill MSN-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegansNature.(2011 May 12)
62.^Weeks KR, Dwyer DS, Aamodt EJAntipsychotic drugs activate the C. elegans akt pathway via the DAF-2 insulin/IGF-1 receptorACS Chem Neurosci.(2010 Jun 16)
63.^Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson IC, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJRibosomal protein S6 kinase 1 signaling regulates mammalian life spanScience.(2009 Oct 2)
64.^Huang X, Liu J, Dickson RCDown-regulating sphingolipid synthesis increases yeast lifespanPLoS Genet.(2012 Feb)
66.^Breslow DK, Weissman JSMembranes in balance: mechanisms of sphingolipid homeostasisMol Cell.(2010 Oct 22)
67.^Carrano AC, Liu Z, Dillin A, Hunter TA conserved ubiquitination pathway determines longevity in response to diet restrictionNature.(2009 Jul 16)
68.^Staab TA, Griffen TC, Corcoran C, Evgrafov O, Knowles JA, Sieburth DThe Conserved SKN-1/Nrf2 Stress Response Pathway Regulates Synaptic Function in Caenorhabditis elegansPLoS Genet.(2013 Mar)
73.^Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JMClearance of p16Ink4a-positive senescent cells delays ageing-associated disordersNature.(2011 Nov 2)
74.^Rayess H, Wang MB, Srivatsan ESCellular senescence and tumor suppressor gene p16Int J Cancer.(2012 Apr 15)
75.^Baker DJ, Perez-Terzic C, Jin F, Pitel KS, Niederländer NJ, Jeganathan K, Yamada S, Reyes S, Rowe L, Hiddinga HJ, Eberhardt NL, Terzic A, van Deursen JMOpposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiencyNat Cell Biol.(2008 Jul)
78.^Schmeisser S, Schmeisser K, Weimer S, Groth M, Priebe S, Fazius E, Kuhlow D, Pick D, Einax JW, Guthke R, Platzer M, Zarse K, Ristow MMitochondrial Hormesis Links Low-Dose Arsenite Exposure to Lifespan ExtensionAging Cell.(2013 Mar 27)
80.^Nakatogawa H, Suzuki K, Kamada Y, Ohsumi YDynamics and diversity in autophagy mechanisms: lessons from yeastNat Rev Mol Cell Biol.(2009 Jul)
81.^Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NTAutophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulumJ Cell Biol.(2008 Aug 25)
82.^Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz JMitochondria supply membranes for autophagosome biogenesis during starvationCell.(2010 May 14)
83.^Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DCPlasma membrane contributes to the formation of pre-autophagosomal structuresNat Cell Biol.(2010 Aug)
84.^Mizushima N, Komatsu MAutophagy: renovation of cells and tissuesCell.(2011 Nov 11)
85.^Orenstein SJ, Cuervo AMChaperone-mediated autophagy: molecular mechanisms and physiological relevanceSemin Cell Dev Biol.(2010 Sep)
86.^Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jäättelä M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SAA comprehensive glossary of autophagy-related molecules and processes (2nd edition)Autophagy.(2011 Nov)
87.^Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi YA unified nomenclature for yeast autophagy-related genesDev Cell.(2003 Oct)
88.^Vazquez-Martin A, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Vellon L, Menendez JAMitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemnessAging (Albany NY).(2012 Jun)
89.^Yen WL, Klionsky DJHow to live long and prosper: autophagy, mitochondria, and agingPhysiology (Bethesda).(2008 Oct)
90.^Bhatia-Kiššová I, Camougrand NMitophagy in yeast: actors and physiological rolesFEMS Yeast Res.(2010 Dec)
92.^Kanki T, Klionsky DJ, Okamoto KMitochondria autophagy in yeastAntioxid Redox Signal.(2011 May 15)
94.^Lee J, Giordano S, Zhang JAutophagy, mitochondria and oxidative stress: cross-talk and redox signallingBiochem J.(2012 Jan 15)
95.^Richard VR, Leonov A, Beach A, Burstein MT, Koupaki O, Gomez-Perez A, Levy S, Pluska L, Mattie S, Rafesh R, Iouk T, Sheibani S, Greenwood M, Vali H, Titorenko VIMacromitophagy is a longevity assurance process that in chronologically aging yeast limited in calorie supply sustains functional mitochondria and maintains cellular lipid homeostasisAging (Albany NY).(2013 Mar 30)
98.^Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OSFission and selective fusion govern mitochondrial segregation and elimination by autophagyEMBO J.(2008 Jan 23)
99.^Ashrafi G, Schwarz TLThe pathways of mitophagy for quality control and clearance of mitochondriaCell Death Differ.(2013 Jan)
100.^Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Löhr F, Popovic D, Occhipinti A, Reichert AS, Terzic J, Dötsch V, Ney PA, Dikic INix is a selective autophagy receptor for mitochondrial clearanceEMBO Rep.(2010 Jan)
101.^Schwarten M, Mohrlüder J, Ma P, Stoldt M, Thielmann Y, Stangler T, Hersch N, Hoffmann B, Merkel R, Willbold DNix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagyAutophagy.(2009 Jul)
102.^Narendra D, Tanaka A, Suen DF, Youle RJParkin is recruited selectively to impaired mitochondria and promotes their autophagyJ Cell Biol.(2008 Dec 1)
103.^Suen DF, Narendra DP, Tanaka A, Manfredi G, Youle RJParkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cellsProc Natl Acad Sci U S A.(2010 Jun 29)
104.^Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJPINK1 is selectively stabilized on impaired mitochondria to activate ParkinPLoS Biol.(2010 Jan 26)
105.^Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Kitada T, Kim JM, Chung JPINK1 controls mitochondrial localization of Parkin through direct phosphorylationBiochem Biophys Res Commun.(2008 Dec 19)
108.^Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer WPINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1Nat Cell Biol.(2010 Feb)
111.^Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JWMitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagyHum Mol Genet.(2010 Dec 15)
112.^Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJProteasome and p97 mediate mitophagy and degradation of mitofusins induced by ParkinJ Cell Biol.(2010 Dec 27)
113.^Cuervo AMChaperone-mediated autophagy: selectivity pays offTrends Endocrinol Metab.(2010 Mar)
114.^Dice JFChaperone-mediated autophagyAutophagy.(2007 Jul-Aug)
116.^Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AMConsequences of the selective blockage of chaperone-mediated autophagyProc Natl Acad Sci U S A.(2006 Apr 11)
117.^Kiffin R, Christian C, Knecht E, Cuervo AMActivation of chaperone-mediated autophagy during oxidative stressMol Biol Cell.(2004 Nov)
118.^Cuervo AM, Knecht E, Terlecky SR, Dice JFActivation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvationAm J Physiol.(1995 Nov)
122.^Cuervo AMAutophagy: many paths to the same endMol Cell Biochem.(2004 Aug)
123.^Chiang HL, Terlecky SR, Plant CP, Dice JFA role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteinsScience.(1989 Oct 20)
125.^Agarraberes FA, Terlecky SR, Dice JFAn intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradationJ Cell Biol.(1997 May 19)
126.^Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AMThe chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membraneMol Cell Biol.(2008 Sep)
128.^Cuervo AM, Dice JFUnique properties of lamp2a compared to other lamp2 isoformsJ Cell Sci.(2000 Dec)
130.^Cuervo AMAutophagy and aging: keeping that old broom workingTrends Genet.(2008 Dec)
132.^Cuervo AM, Dice JFAge-related decline in chaperone-mediated autophagyJ Biol Chem.(2000 Oct 6)
133.^Kiffin R, Kaushik S, Zeng M, Bandyopadhyay U, Zhang C, Massey AC, Martinez-Vicente M, Cuervo AMAltered dynamics of the lysosomal receptor for chaperone-mediated autophagy with ageJ Cell Sci.(2007 Mar 1)
135.^Rodriguez-Navarro JA, Kaushik S, Koga H, Dall'Armi C, Shui G, Wenk MR, Di Paolo G, Cuervo AMInhibitory effect of dietary lipids on chaperone-mediated autophagyProc Natl Acad Sci U S A.(2012 Mar 20)
136.^Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JRLife extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegansExp Gerontol.(2003 Sep)
137.^Lakowski B, Hekimi SThe genetics of caloric restriction in Caenorhabditis elegansProc Natl Acad Sci U S A.(1998 Oct 27)
138.^Yamada P, Amorim F, Moseley P, Schneider SHeat shock protein 72 response to exercise in humansSports Med.(2008)
139.^Fehrenbach E, Northoff HFree radicals, exercise, apoptosis, and heat shock proteinsExerc Immunol Rev.(2001)
141.^Skidmore R, Gutierrez JA, Guerriero V Jr, Kregel KCHSP70 induction during exercise and heat stress in rats: role of internal temperatureAm J Physiol.(1995 Jan)
143.^Fehrenbach E, Passek F, Niess AM, Pohla H, Weinstock C, Dickhuth HH, Northoff HHSP expression in human leukocytes is modulated by endurance exerciseMed Sci Sports Exerc.(2000 Mar)
146.^Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler HMolecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditionsJ Appl Physiol.(2001 Jul)
147.^Liu Y, Mayr S, Opitz-Gress A, Zeller C, Lormes W, Baur S, Lehmann M, Steinacker JMHuman skeletal muscle HSP70 response to training in highly trained rowersJ Appl Physiol.(1999 Jan)
148.^Peart DJ, McNaughton LR, Midgley AW, Taylor L, Towlson C, Madden LA, Vince RVPre-exercise alkalosis attenuates the heat shock protein 72 response to a single-bout of anaerobic exerciseJ Sci Med Sport.(2011 Sep)
149.^Febbraio MA, Mesa JL, Chung J, Steensberg A, Keller C, Nielsen HB, Krustrup P, Ott P, Secher NH, Pedersen BKGlucose ingestion attenuates the exercise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humansCell Stress Chaperones.(2004 Winter)
153.^Gehrig SM, van der Poel C, Sayer TA, Schertzer JD, Henstridge DC, Church JE, Lamon S, Russell AP, Davies KE, Febbraio MA, Lynch GSHsp72 preserves muscle function and slows progression of severe muscular dystrophyNature.(2012 Apr 4)
154.^Colotti C, Cavallini G, Vitale RL, Donati A, Maltinti M, Del Ry S, Bergamini E, Giannessi DEffects of aging and anti-aging caloric restrictions on carbonyl and heat shock protein levels and expressionBiogerontology.(2005 Dec)
155.^Selsby JT, Judge AR, Yimlamai T, Leeuwenburgh C, Dodd SLLife long calorie restriction increases heat shock proteins and proteasome activity in soleus muscles of Fisher 344 ratsExp Gerontol.(2005 Jan-Feb)
156.^Goldberg AA, Richard VR, Kyryakov P, Bourque SD, Beach A, Burstein MT, Glebov A, Koupaki O, Boukh-Viner T, Gregg C, Juneau M, English AM, Thomas DY, Titorenko VIChemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processesAging (Albany NY).(2010 Jul)
157.^Burstein MT, Kyryakov P, Beach A, Richard VR, Koupaki O, Gomez-Perez A, Leonov A, Levy S, Noohi F, Titorenko VILithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespanCell Cycle.(2012 Sep 15)
158.^Beach A, Titorenko VIIn search of housekeeping pathways that regulate longevityCell Cycle.(2011 Sep 15)
159.^Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJVitamin D receptor as an intestinal bile acid sensorScience.(2002 May 17)
160.^Keitel V, Görg B, Bidmon HJ, Zemtsova I, Spomer L, Zilles K, Häussinger DThe bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brainGlia.(2010 Nov 15)
161.^Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans KThe bile acid membrane receptor TGR5: a valuable metabolic targetDig Dis.(2011)
162.^Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SAThe nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicityProc Natl Acad Sci U S A.(2001 Mar 13)
163.^Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan BIdentification of a nuclear receptor for bile acidsScience.(1999 May 21)