Quick Navigation

Saturated fat

A saturated fat is a type of fat in which the fatty acid chains have all or predominantly single bonds.

Our evidence-based analysis on saturated fat features 58 unique references to scientific papers.

Research analysis led by and reviewed by the Examine team.
Last Updated:

References

  1. Poudyal H, Brown L. Should the pharmacological actions of dietary fatty acids in cardiometabolic disorders be classified based on biological or chemical function?. Prog Lipid Res. (2015)
  2. Grundy SM. Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr. (1994)
  3. Vandenberghe C, et al. Tricaprylin alone increases plasma ketone response more than coconut oil or other medium chain triglycerides: an acute crossover study in healthy adults. Curr Dev Nutr. (2017)
  4. Neal EG, et al. A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia. (2009)
  5. Orsavova J, et al. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int J Mol Sci. (2015)
  6. KEYS A, ANDERSON JT, GRANDE F. Prediction of serum-cholesterol responses of man to changes in fats in the diet. Lancet. (1957)
  7. KEYS A, GRANDE F. Role of dietary fat in human nutrition. III. Diet and the epidemiology of coronary heart disease. Am J Public Health Nations Health. (1957)
  8. Keys A, et al. The seven countries study: 2,289 deaths in 15 years. Prev Med. (1984)
  9. Keys A, et al. The diet and 15-year death rate in the seven countries study. Am J Epidemiol. (1986)
  10. Reiser R. Saturated fat in the diet and serum cholesterol concentration: a critical examination of the literature. Am J Clin Nutr. (1973)
  11. Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. (2007)
  12. Lusis AJ. Atherosclerosis. Nature. (2000)
  13. World Health Organization. Effects of saturated fatty acids on serum lipids and lipoproteins: a systematic review and regression analysis.
  14. Allaire J, et al. LDL particle number and size and cardiovascular risk: anything new under the sun?. Curr Opin Lipidol. (2017)
  15. Otvos JD, et al. Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. J Clin Lipidol. (2011)
  16. Contois JH, et al. Apolipoprotein B and cardiovascular disease risk: position statement from the AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices. Clin Chem. (2009)
  17. Sniderman AD, et al. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes. (2011)
  18. Feig JE, Feig JL, Dangas GD. The role of HDL in plaque stabilization and regression: basic mechanisms and clinical implications. Coron Artery Dis. (2016)
  19. Millán J, et al. Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag. (2009)
  20. McQueen MJ, et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study. Lancet. (2008)
  21. Walldius G, et al. The apoB/apoA-I ratio is better than the cholesterol ratios to estimate the balance between plasma proatherogenic and antiatherogenic lipoproteins and to predict coronary risk. Clin Chem Lab Med. (2004)
  22. da Luz PL, et al. Comparison of serum lipid values in patients with coronary artery disease at <50, 50 to 59, 60 to 69, and >70 years of age. Am J Cardiol. (2005)
  23. da Luz PL, et al. High ratio of triglycerides to HDL-cholesterol predicts extensive coronary disease. Clinics (Sao Paulo). (2008)
  24. Hanak V, et al. Accuracy of the triglyceride to high-density lipoprotein cholesterol ratio for prediction of the low-density lipoprotein phenotype B. Am J Cardiol. (2004)
  25. Golia E, et al. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep. (2014)
  26. Bertrand MJ, Tardif JC. Inflammation and beyond: new directions and emerging drugs for treating atherosclerosis. Expert Opin Emerg Drugs. (2017)
  27. Fritsche KL. The science of fatty acids and inflammation. Adv Nutr. (2015)
  28. Rietschel ET, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. (1994)
  29. Miller SI, Ernst RK, Bader MW. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol. (2005)
  30. Copeland S, et al. Acute inflammatory response to endotoxin in mice and humans. Clin Diagn Lab Immunol. (2005)
  31. Santos S, Oliveira A, Lopes C. Systematic review of saturated fatty acids on inflammation and circulating levels of adipokines. Nutr Res. (2013)
  32. Kratz M, et al. Effects of dietary fatty acids on the composition and oxidizability of low-density lipoprotein. Eur J Clin Nutr. (2002)
  33. Chowdhury R, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann Intern Med. (2014)
  34. Siri-Tarino PW, et al. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr. (2010)
  35. Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. (2010)
  36. Ramsden CE, et al. n-6 fatty acid-specific and mixed polyunsaturate dietary interventions have different effects on CHD risk: a meta-analysis of randomised controlled trials. Br J Nutr. (2010)
  37. Hamley S. The effect of replacing saturated fat with mostly n-6 polyunsaturated fat on coronary heart disease: a meta-analysis of randomised controlled trials. Nutr J. (2017)
  38. Månsson HL. Fatty acids in bovine milk fat. Food Nutr Res. (2008)
  39. Huth PJ, Park KM. Influence of dairy product and milk fat consumption on cardiovascular disease risk: a review of the evidence. Adv Nutr. (2012)
  40. Lovegrove JA, Hobbs DA. New perspectives on dairy and cardiovascular health. Proc Nutr Soc. (2016)
  41. Rosqvist F, et al. Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. Am J Clin Nutr. (2015)
  42. O'Sullivan TA, et al. Food sources of saturated fat and the association with mortality: a meta-analysis. Am J Public Health. (2013)
  43. Vlassara H, et al. Oral AGE restriction ameliorates insulin resistance in obese individuals with the metabolic syndrome: a randomised controlled trial. Diabetologia. (2016)
  44. Briggs MA, Petersen KS, Kris-Etherton PM. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare (Basel). (2017)
  45. Zong G, et al. Monounsaturated fats from plant and animal sources in relation to risk of coronary heart disease among US men and women. The American Journal of Clinical Nutrition. (2018)
  46. Hussain G, et al. Fatting the brain: a brief of recent research. Front Cell Neurosci. (2013)
  47. Fernandes MF, Mutch DM, Leri F. The Relationship between Fatty Acids and Different Depression-Related Brain Regions, and Their Potential Role as Biomarkers of Response to Antidepressants. Nutrients. (2017)
  48. Kien CL, et al. Substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in mood. Am J Clin Nutr. (2013)
  49. Dumas JA, et al. Dietary saturated fat and monounsaturated fat have reversible effects on brain function and the secretion of pro-inflammatory cytokines in young women. Metabolism. (2016)
  50. Sartorius T, et al. Monounsaturated fatty acids prevent the aversive effects of obesity on locomotion, brain activity, and sleep behavior. Diabetes. (2012)
  51. Kaviani S, Cooper JA. Appetite responses to high-fat meals or diets of varying fatty acid composition: a comprehensive review. Eur J Clin Nutr. (2017)
  52. Krishnan S, Cooper JA. Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur J Nutr. (2014)
  53. Jones PJ, Pencharz PB, Clandinin MT. Whole body oxidation of dietary fatty acids: implications for energy utilization. Am J Clin Nutr. (1985)
  54. Schmidt DE, Allred JB, Kien CL. Fractional oxidation of chylomicron-derived oleate is greater than that of palmitate in healthy adults fed frequent small meals. J Lipid Res. (1999)
  55. Dorgan JF, et al. Effects of dietary fat and fiber on plasma and urine androgens and estrogens in men: a controlled feeding study. Am J Clin Nutr. (1996)
  56. Wang C, et al. Low-fat high-fiber diet decreased serum and urine androgens in men. J Clin Endocrinol Metab. (2005)
  57. Hämäläinen E, et al. Diet and serum sex hormones in healthy men. J Steroid Biochem. (1984)
  58. Raben A, et al. Serum sex hormones and endurance performance after a lacto-ovo vegetarian and a mixed diet. Med Sci Sports Exerc. (1992)