Piceatannol
•Last Updated: September 28 2022
Piceatannol is a stilbene similar to resveratrol that is found in limited levels in some of the same foods. They share many properties, and while piceatannol may be a possible alternative there is not enough evidence to suggest it is better than resveratrol.
Piceatannol is most often used for
Last Updated: September 28 2022
Note that Piceatannol is also known as:
- Astringinin
Piceatannol should not be confused with:
- Resveratrol or Pterostilbene (other stilbenes)
1.^Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JRResveratrol, pterostilbene, and piceatannol in vaccinium berriesJ Agric Food Chem.(2004 Jul 28)
2.^Moss R, Mao Q, Taylor D, Saucier CInvestigation of monomeric and oligomeric wine stilbenoids in red wines by ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometryRapid Commun Mass Spectrom.(2013 Aug 30)
3.^Piotrowska H, Kucinska M, Murias MBiological activity of piceatannol: leaving the shadow of resveratrolMutat Res.(2012 Jan-Mar)
4.^Cantos E, Espín JC, Fernández MJ, Oliva J, Tomás-Barberán FAPostharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red winesJ Agric Food Chem.(2003 Feb 26)
5.^Guerrero RF, Puertas B, Jiménez MJ, Cacho J, Cantos-Villar EThe occurrence of the stilbene piceatannol in grapesFood Chem.(2010 Sep)
6.^Buiarelli F, Coccioli F, Jasionowska R, Merolle M, Terracciano AAnalysis of some stilbenes in Italian wines by liquid chromatography/tandem mass spectrometryRapid Commun Mass Spectrom.(2007)
7.^Guerrero RF, Puertas B, Jiménez MJ, Cacho J, Cantos-Villar EMonitoring the process to obtain red wine enriched in resveratrol and piceatannol without quality lossFood Chem.(2010 Sep)
8.^Boutegrabet L, Fekete A, Hertkorn N, Papastamoulis Y, Waffo-Téguo P, Mérillon JM, Jeandet P, Gougeon RD, Schmitt-Kopplin PDetermination of stilbene derivatives in Burgundy red wines by ultra-high-pressure liquid chromatographyAnal Bioanal Chem.(2011 Sep)
9.^Xie L, Bolling BWCharacterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC-MSFood Chem.(2014 Apr 1)
10.^Matsui Y, Sugiyama K, Kamei M, Takahashi T, Suzuki T, Katagata Y, Ito TExtract of Passion Fruit ( Passiflora edulis ) Seed Containing High Amounts of Piceatannol Inhibits Melanogenesis and Promotes Collagen SynthesisJ Agric Food Chem.(2010 Sep 7)
11.^Maruki-Uchida H, Kurita I, Sugiyama K, Sai M, Maeda K, Ito TThe protective effects of piceatannol from passion fruit (Passiflora edulis) seeds in UVB-irradiated keratinocytesBiol Pharm Bull.(2013)
12.^Ko SK, Lee SM, Whang WKAnti-platelet aggregation activity of stilbene derivatives from Rheum undulatumArch Pharm Res.(1999 Aug)
14.^Yang MH, Lin YJ, Kuo CH, Ku KLMedicinal mushroom Ganoderma lucidum as a potent elicitor in production of t-resveratrol and t-piceatannol in peanut callusesJ Agric Food Chem.(2010 Sep 8)
15.^Viñas P, Martínez-Castillo N, Campillo N, Hernández-Córdoba MDirectly suspended droplet microextraction with in injection-port derivatization coupled to gas chromatography-mass spectrometry for the analysis of polyphenols in herbal infusions, fruits and functional foodsJ Chromatogr A.(2011 Feb 4)
16.^Adesanya SA, Nia R, Martin MT, Boukamcha N, Montagnac A, Païs MStilbene Derivatives from Cissus quadrangularisJ Nat Prod.(1999 Oct)
17.^Benová B, Adam M, Onderková K, Královský J, Krajícek MAnalysis of selected stilbenes in Polygonum cuspidatum by HPLC coupled with CoulArray detectionJ Sep Sci.(2008 Jul)
18.^Vastano BC, Chen Y, Zhu N, Ho CT, Zhou Z, Rosen RTIsolation and identification of stilbenes in two varieties of Polygonum cuspidatumJ Agric Food Chem.(2000 Feb)
19.^Wang SC, Hart JHHeartwood extractives of Maclura pomifera and their role in decay resistanceWood Fiber Sci.(1983 Oct)
20.^Baez DA, Vallejo LGZ, Jiminez-Estrada MPhytochemical Studies On Senna Skinneri and Senna WislizeniNat Prod Lett.(1999)
21.^Rossi M, Caruso F, Opazo C, Salciccioli JCrystal and molecular structure of piceatannol; scavenging features of resveratrol and piceatannol on hydroxyl and peroxyl radicals and docking with transthyretinJ Agric Food Chem.(2008 Nov 26)
22.^Choi KH, Kim JE, Song NR, Son JE, Hwang MK, Byun S, Kim JH, Lee KW, Lee HJPhosphoinositide 3-kinase is a novel target of piceatannol for inhibiting PDGF-BB-induced proliferation and migration in human aortic smooth muscle cellsCardiovasc Res.(2010 Mar 1)
23.^Lee CK, Lee HM, Kim HJ, Park HJ, Won KJ, Roh HY, Choi WS, Jeon BH, Park TK, Kim BSyk contributes to PDGF-BB-mediated migration of rat aortic smooth muscle cells via MAPK pathwaysCardiovasc Res.(2007 Apr 1)
24.^Oliver JM, Burg DL, Wilson BS, McLaughlin JL, Geahlen RLInhibition of mast cell Fc epsilon R1-mediated signaling and effector function by the Syk-selective inhibitor, piceatannolJ Biol Chem.(1994 Nov 25)
25.^Seow CJ, Chue SC, Wong WSPiceatannol, a Syk-selective tyrosine kinase inhibitor, attenuated antigen challenge of guinea pig airways in vitroEur J Pharmacol.(2002 May 17)
26.^Geahlen RL, McLaughlin JLPiceatannol (3,4,3',5'-tetrahydroxy-trans-stilbene) is a naturally occurring protein-tyrosine kinase inhibitorBiochem Biophys Res Commun.(1989 Nov 30)
27.^Murias M, Handler N, Erker T, Pleban K, Ecker G, Saiko P, Szekeres T, Jäger WResveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure-activity relationshipBioorg Med Chem.(2004 Nov 1)
28.^Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WCStructural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agentsNature.(1996 Dec 19-26)
29.^Zheng J, Ramirez VDInhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicalsBr J Pharmacol.(2000 Jul)
30.^Gledhill JR, Montgomery MG, Leslie AG, Walker JEMechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenolsProc Natl Acad Sci U S A.(2007 Aug 21)
31.^Zheng J, Ramirez VDPiceatannol, a stilbene phytochemical, inhibits mitochondrial F0F1-ATPase activity by targeting the F1 complexBiochem Biophys Res Commun.(1999 Aug 2)
32.^Dickson VK, Silvester JA, Fearnley IM, Leslie AG, Walker JEOn the structure of the stator of the mitochondrial ATP synthaseEMBO J.(2006 Jun 21)
33.^Senior AE, Nadanaciva S, Weber JThe molecular mechanism of ATP synthesis by F1F0-ATP synthaseBiochim Biophys Acta.(2002 Feb 15)
34.^Sekiya M, Nakamoto RK, Nakanishi-Matsui M, Futai MBinding of phytopolyphenol piceatannol disrupts β/γ subunit interactions and rate-limiting step of steady-state rotational catalysis in Escherichia coli F1-ATPaseJ Biol Chem.(2012 Jun 29)
35.^Lin HS, Tringali C, Spatafora C, Wu C, Ho PCA simple and sensitive HPLC-UV method for the quantification of piceatannol analog trans-3,5,3',4'-tetramethoxystilbene in rat plasma and its application for a pre-clinical pharmacokinetic studyJ Pharm Biomed Anal.(2010 Feb 5)
36.^Roupe K, Teng XW, Fu X, Meadows GG, Davies NMDetermination of piceatannol in rat serum and liver microsomes: pharmacokinetics and phase I and II biotransformationBiomed Chromatogr.(2004 Oct)
37.^Almeida MR, Gales L, Damas AM, Cardoso I, Saraiva MJSmall transthyretin (TTR) ligands as possible therapeutic agents in TTR amyloidosesCurr Drug Targets CNS Neurol Disord.(2005 Oct)
38.^Roupe KA, Yáñez JA, Teng XW, Davies NMPharmacokinetics of selected stilbenes: rhapontigenin, piceatannol and pinosylvin in ratsJ Pharm Pharmacol.(2006 Nov)
39.^Steenwyk RC, Tan BIn vitro evidence for the formation of reactive intermediates of resveratrol in human liver microsomesXenobiotica.(2010 Jan)
40.^Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T, Ruparelia KC, Lamb JH, Farmer PB, Stanley LA, Burke MDThe cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1Br J Cancer.(2002 Mar 4)
41.^Lu J, Ho CH, Ghai G, Chen KYResveratrol analog, 3,4,5,4'-tetrahydroxystilbene, differentially induces pro-apoptotic p53/Bax gene expression and inhibits the growth of transformed cells but not their normal counterpartsCarcinogenesis.(2001 Feb)
42.^Piver B, Fer M, Vitrac X, Merillon JM, Dreano Y, Berthou F, Lucas DInvolvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomesBiochem Pharmacol.(2004 Aug 15)
43.^Kim DH, Ahn T, Jung HC, Pan JG, Yun CHGeneration of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3Drug Metab Dispos.(2009 May)
44.^Niles RM, Cook CP, Meadows GG, Fu YM, McLaughlin JL, Rankin GOResveratrol is rapidly metabolized in athymic (nu/nu) mice and does not inhibit human melanoma xenograft tumor growthJ Nutr.(2006 Oct)
45.^Miksits M, Sulyok M, Schuhmacher R, Szekeres T, Jäger WIn-vitro sulfation of piceatannol by human liver cytosol and recombinant sulfotransferasesJ Pharm Pharmacol.(2009 Feb)
46.^Miksits M, Maier-Salamon A, Vo TP, Sulyok M, Schuhmacher R, Szekeres T, Jäger WGlucuronidation of piceatannol by human liver microsomes: major role of UGT1A1, UGT1A8 and UGT1A10J Pharm Pharmacol.(2010 Jan)
47.^Mikstacka R, Rimando AM, Szalaty K, Stasik K, Baer-Dubowska WEffect of natural analogues of trans-resveratrol on cytochromes P4501A2 and 2E1 catalytic activitiesXenobiotica.(2006 Apr)
48.^Mikstacka R, Gnojkowski J, Baer-Dubowska WEffect of natural phenols on the catalytic activity of cytochrome P450 2E1Acta Biochim Pol.(2002)
49.^Hsieh TC, Bennett DJ, Lee YS, Wu E, Wu JMIn silico and biochemical analyses identify quinone reductase 2 as a target of piceatannolCurr Med Chem.(2013)
50.^Zhang S, Yang L, Kouadir M, Tan R, Lu Y, Chang J, Xu B, Yin X, Zhou X, Zhao DPP2 and piceatannol inhibit PrP106-126-induced iNOS activation mediated by CD36 in BV2 microgliaActa Biochim Biophys Sin (Shanghai).(2013 Sep)
51.^Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini FNeurotoxicity of a prion protein fragmentNature.(1993 Apr 8)
52.^Aguzzi A, Heikenwalder MPathogenesis of prion diseases: current status and future outlookNat Rev Microbiol.(2006 Oct)
53.^Kouadir M, Yang L, Tan R, Shi F, Lu Y, Zhang S, Yin X, Zhou X, Zhao DCD36 participates in PrP(106-126)-induced activation of microgliaPLoS One.(2012)
54.^Wilkinson B, Koenigsknecht-Talboo J, Grommes C, Lee CY, Landreth GFibrillar beta-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microgliaJ Biol Chem.(2006 Jul 28)
55.^Silverstein RL, Febbraio MCD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behaviorSci Signal.(2009 May 26)
56.^Son Y, Byun SJ, Pae HOInvolvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cellsAmino Acids.(2013 Aug)
57.^Yoo MY, Oh KS, Lee JW, Seo HW, Yon GH, Kwon DY, Kim YS, Ryu SY, Lee BHVasorelaxant effect of stilbenes from rhizome extract of rhubarb (Rheum undulatum) on the contractility of rat aortaPhytother Res.(2007 Feb)
58.^Lee HM, Kim HJ, Park HJ, Won KJ, Kim J, Shin HS, Park PJ, Kim HJ, Lee KY, Park SH, Lee CK, Kim BSpleen tyrosine kinase participates in Src-mediated migration and proliferation by PDGF-BB in rat aortic smooth muscle cellsArch Pharm Res.(2007 Jun)
61.^Morris SM Jr, Kepka-Lenhart D, Chen LCDifferential regulation of arginases and inducible nitric oxide synthase in murine macrophage cellsAm J Physiol.(1998 Nov)
62.^Berkowitz DE, White R, Li D, Minhas KM, Cernetich A, Kim S, Burke S, Shoukas AA, Nyhan D, Champion HC, Hare JMArginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vesselsCirculation.(2003 Oct 21)
63.^Simon A, Plies L, Habermeier A, Martiné U, Reining M, Closs EIRole of neutral amino acid transport and protein breakdown for substrate supply of nitric oxide synthase in human endothelial cellsCirc Res.(2003 Oct 31)
64.^Holowatz LA, Thompson CS, Kenney WLL-Arginine supplementation or arginase inhibition augments reflex cutaneous vasodilatation in aged human skinJ Physiol.(2006 Jul 15)
65.^Nelin LD, Wang X, Zhao Q, Chicoine LG, Young TL, Hatch DM, English BK, Liu YMKP-1 switches arginine metabolism from nitric oxide synthase to arginase following endotoxin challengeAm J Physiol Cell Physiol.(2007 Aug)
66.^Ryoo S, Lemmon CA, Soucy KG, Gupta G, White AR, Nyhan D, Shoukas A, Romer LH, Berkowitz DEOxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signalingCirc Res.(2006 Oct 27)
67.^Que LG, Kantrow SP, Jenkinson CP, Piantadosi CA, Huang YCInduction of arginase isoforms in the lung during hyperoxiaAm J Physiol.(1998 Jul)
68.^Woo A, Min B, Ryoo SPiceatannol-3'-O-beta-D-glucopyranoside as an active component of rhubarb activates endothelial nitric oxide synthase through inhibition of arginase activityExp Mol Med.(2010 Jul 31)
69.^Woo A, Shin W, Cuong TD, Min B, Lee JH, Jeon BH, Ryoo SArginase inhibition by piceatannol-3'-O-β-D-glucopyranoside improves endothelial dysfunction via activation of endothelial nitric oxide synthase in ApoE-null mice fed a high-cholesterol dietInt J Mol Med.(2013 Apr)
70.^Frombaum M, Therond P, Djelidi R, Beaudeux JL, Bonnefont-Rousselot D, Borderie DPiceatannol is more effective than resveratrol in restoring endothelial cell dimethylarginine dimethylaminohydrolase expression and activity after high-glucose oxidative stressFree Radic Res.(2011 Mar)
71.^MacAllister RJ, Parry H, Kimoto M, Ogawa T, Russell RJ, Hodson H, Whitley GS, Vallance PRegulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolaseBr J Pharmacol.(1996 Dec)
72.^Chen Y, Li Y, Zhang P, Traverse JH, Hou M, Xu X, Kimoto M, Bache RJDimethylarginine dimethylaminohydrolase and endothelial dysfunction in failing heartsAm J Physiol Heart Circ Physiol.(2005 Nov)
73.^Bełtowski J, Kedra AAsymmetric dimethylarginine (ADMA) as a target for pharmacotherapyPharmacol Rep.(2006 Mar-Apr)
74.^Yuan Q, Peng J, Liu SY, Wang CJ, Xiang DX, Xiong XM, Hu CP, Li YJInhibitory effect of resveratrol derivative BTM-0512 on high glucose-induced cell senescence involves dimethylaminohydrolase/asymmetric dimethylarginine pathwayClin Exp Pharmacol Physiol.(2010 May)
75.^Murias M, Jäger W, Handler N, Erker T, Horvath Z, Szekeres T, Nohl H, Gille LAntioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationshipBiochem Pharmacol.(2005 Mar 15)
76.^Kinoshita Y, Kawakami S, Yanae K, Sano S, Uchida H, Inagaki H, Ito TEffect of long-term piceatannol treatment on eNOS levels in cultured endothelial cellsBiochem Biophys Res Commun.(2013 Jan 18)
77.^Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WCRegulation of endothelium-derived nitric oxide production by the protein kinase AktNature.(1999 Jun 10)
78.^Takahashi S, Nakashima YRepeated and long-term treatment with physiological concentrations of resveratrol promotes NO production in vascular endothelial cellsBr J Nutr.(2012 Mar)
79.^Maggiolini M, Recchia AG, Bonofiglio D, Catalano S, Vivacqua A, Carpino A, Rago V, Rossi R, Andò SThe red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor alpha in human breast cancer cellsJ Mol Endocrinol.(2005 Oct)
80.^Son Y, Chung HT, Pae HODifferential effects of resveratrol and its natural analogs, piceatannol and 3,5,4'-trans-trimethoxystilbene, on anti-inflammatory heme oxigenase-1 expression in RAW264.7 macrophagesBiofactors.(2013 Jul 17)
81.^Zhang J, Berenstein E, Siraganian RPPhosphorylation of Tyr342 in the linker region of Syk is critical for Fc epsilon RI signaling in mast cellsMol Cell Biol.(2002 Dec)
82.^Amoui M, Dráberová L, Tolar P, Dráber PDirect interaction of Syk and Lyn protein tyrosine kinases in rat basophilic leukemia cells activated via type I Fc epsilon receptorsEur J Immunol.(1997 Jan)
83.^Drábiková K, Perečko T, Nosáľ R, Harmatha J, Smidrkal J, Jančinová VPolyphenol derivatives - potential regulators of neutrophil activityInterdiscip Toxicol.(2012 Jun)
84.^Kalariya NM, Shoeb M, Reddy AB, Sawhney R, Ramana KVPiceatannol suppresses endotoxin-induced ocular inflammation in ratsInt Immunopharmacol.(2013 Oct)
88.^McFadyen MC, Murray GICytochrome P450 1B1: a novel anticancer therapeutic targetFuture Oncol.(2005 Apr)
89.^Buharalioglu CK, Song CY, Yaghini FA, Ghafoor HU, Motiwala M, Adris T, Estes AM, Malik KUAngiotensin II-induced process of angiogenesis is mediated by spleen tyrosine kinase via VEGF receptor-1 phosphorylationAm J Physiol Heart Circ Physiol.(2011 Sep)
90.^Chintalgattu V, Nair DM, Katwa LCCardiac myofibroblasts: a novel source of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDRJ Mol Cell Cardiol.(2003 Mar)
91.^Mugabe BE, Yaghini FA, Song CY, Buharalioglu CK, Waters CM, Malik KUAngiotensin II-induced migration of vascular smooth muscle cells is mediated by p38 mitogen-activated protein kinase-activated c-Src through spleen tyrosine kinase and epidermal growth factor receptor transactivationJ Pharmacol Exp Ther.(2010 Jan)
92.^Xu B, Tao ZZPiceatannol Enhances the Antitumor Efficacy of Gemcitabine in Human A549 Non-Small Cell Lung Cancer CellsOncol Res.(2014)
93.^Dias SJ, Li K, Rimando AM, Dhar S, Mizuno CS, Penman AD, Levenson ASTrimethoxy-resveratrol and piceatannol administered orally suppress and inhibit tumor formation and growth in prostate cancer xenograftsProstate.(2013 Aug)
94.^Szlosarek PW, Balkwill FRTumour necrosis factor alpha: a potential target for the therapy of solid tumoursLancet Oncol.(2003 Sep)
95.^Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich PThe transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptorCell.(1995 Dec 1)
97.^Seals DF, Courtneidge SAThe ADAMs family of metalloproteases: multidomain proteins with multiple functionsGenes Dev.(2003 Jan 1)
98.^Liu WH, Chang LSSuppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression and TNFα-mediated NFκB activation in piceatannol-treated human leukemia U937 cellsBiochem Pharmacol.(2012 Sep 1)
99.^Szalad A, Katakowski M, Zheng X, Jiang F, Chopp MTranscription factor Sp1 induces ADAM17 and contributes to tumor cell invasiveness under hypoxiaJ Exp Clin Cancer Res.(2009 Sep 22)
100.^Elcheva I1, Goswami S, Noubissi FK, Spiegelman VSCRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradationMol Cell.(2009 Jul 31)
101.^Ashikawa K, Majumdar S, Banerjee S, Bharti AC, Shishodia S, Aggarwal BBPiceatannol Inhibits TNF-Induced NF-κB Activation and NF-κB-Mediated Gene Expression Through Suppression of IκBα Kinase and p65 PhosphorylationJ Immunol.(2002 Dec)
102.^Liu WH, Chang LSSuppression of ADAM17-mediated Lyn/Akt pathways induces apoptosis of human leukemia U937 cells: Bungarus multicinctus protease inhibitor-like protein-1 uncovers the cytotoxic mechanismJ Biol Chem.(2010 Oct 1)
103.^Kang CH, Moon DO, Choi YH, Choi IW, Moon SK, Kim WJ, Kim GYPiceatannol enhances TRAIL-induced apoptosis in human leukemia THP-1 cells through Sp1- and ERK-dependent DR5 up-regulationToxicol In Vitro.(2011 Apr)
104.^Fritzer-Szekeres M, Savinc I, Horvath Z, Saiko P, Pemberger M, Graser G, Bernhaus A, Ozsvar-Kozma M, Grusch M, Jaeger W, Szekeres TBiochemical effects of piceatannol in human HL-60 promyelocytic leukemia cells--synergism with Ara-CInt J Oncol.(2008 Oct)
105.^Liu WH, Chang LSPiceatannol induces Fas and FasL up-regulation in human leukemia U937 cells via Ca2+/p38alpha MAPK-mediated activation of c-Jun and ATF-2 pathwaysInt J Biochem Cell Biol.(2010 Sep)
106.^Lasham A, Lindridge E, Rudert F, Onrust R, Watson JRegulation of the human fas promoter by YB-1, Purα and AP-1 transcription factorsGene.(2000 Jul)
108.^Yokozawa T, Kim YJPiceatannol inhibits melanogenesis by its antioxidative actionsBiol Pharm Bull.(2007 Nov)
109.^Wojtczak A, Cody V, Luft JR, Pangborn WStructures of human transthyretin complexed with thyroxine at 2.0 A resolution and 3',5'-dinitro-N-acetyl-L-thyronine at 2.2 A resolutionActa Crystallogr D Biol Crystallogr.(1996 Jul 1)
111.^Porat Y, Abramowitz A, Gazit EInhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanismChem Biol Drug Des.(2006 Jan)
112.^Costa R, Gonçalves A, Saraiva MJ, Cardoso ITransthyretin binding to A-Beta peptide--impact on A-Beta fibrillogenesis and toxicityFEBS Lett.(2008 Mar 19)
113.^Han YS, Bastianetto S, Dumont Y, Quirion RSpecific plasma membrane binding sites for polyphenols, including resveratrol, in the rat brainJ Pharmacol Exp Ther.(2006 Jul)
Primary Use