Ziziphus jujuba


All Essential Benefits/Effects/Facts & Information

Ziziphus Jujuba is a fruit used in Traditional Chinese Medicine for purposes related to gastrointestinal health and digestion, as well as being a combination sedative/anxiolytic/pain-killer. It has apparently potent benefits according to Traditional Chinese Medicine, but there is limited human evidence and evidence in general on the benefits of Ziziphus Jujuba.

It appears to be pro-motility in regards to the intestines, speeding up transit time and encouraging defecation. This is associated with an increase in intestinal short chain fatty acids (SCFAs) and an increase in fecal moisture content, so it may be 'healthier' than other laxatives (to stretch the usage of the term 'healthy').

In rats fed high doses of Jujube, the sedative and Anxiety-reducing effects appear to actually be quite potent with at least one study noting that there is similar potency to Diazepam, and the sedative properties may be synergistic with 5-HTP. There are currently no human studies on the sedative or anxiety-reducing effects of Jujube.

Traditional usage suggests Jujube may be anti-fertility for females, and a single rat study appears to find similar effects (although did not measure actual conception rates, just uterus size and estrus); it would be prudent to avoid usage of Jujube if trying to conceive a child.

Confused about supplements?

Free 5 day supplement course

How to Take

Recommended dosage, active amounts, other details

Traditional usage of Jujube is taking 50g of the fruits (20 individual 2-2.5cm diameter fruits) and doing a hot water extract, either a soup of a beverage.

There currently is not enough evidence in humans to establish an effective oral dose of Zizyphus Jujube supplements but estimating from animal studies finding benefits with 500mg/kg for anxiety reduction, an estimated human dose would be:

  • 5,500 mg for a 150lb person

  • 7,300 mg for a 200lb person

  • 9,000 mg for a 250lb person

Confused about supplements?

Free 5 day supplement course

Human Effect Matrix

The Human Effect Matrix looks at human studies (it excludes animal and in vitro studies) to tell you what effects ziziphus jujuba has on your body, and how strong these effects are.

Grade Level of Evidence
Robust research conducted with repeated double-blind clinical trials
Multiple studies where at least two are double-blind and placebo controlled
Single double-blind study or multiple cohort studies
Uncontrolled or observational studies only
Level of Evidence
? The amount of high quality evidence. The more evidence, the more we can trust the results.
Outcome Magnitude of effect
? The direction and size of the supplement's impact on each outcome. Some supplements can have an increasing effect, others have a decreasing effect, and others have no effect.
Consistency of research results
? Scientific research does not always agree. HIGH or VERY HIGH means that most of the scientific research agrees.
Constipation Minor Very High See study
A decrease in the symptoms of constipation has been seen with the water extract of jujubes; which may apply to fruit consumption but may not apply to isolated supplements (due to the polysaccharides being the active ingredients)

Scientific Research

Table of Contents:

  1. 1 Source and Composition
    1. 1.1 Sources
    2. 1.2 Composition
  2. 2 Neurology
    1. 2.1 Cholinergic Neurotransmission
    2. 2.2 Anxiety
    3. 2.3 Sedation
    4. 2.4 Anti-Convulsant
    5. 2.5 Cognition
    6. 2.6 Neuroprotection
  3. 3 Digestion
    1. 3.1 Constipation
  4. 4 Cardiovascular Health
    1. 4.1 Artherosclerosis
  5. 5 Inflammation and Immunology
    1. 5.1 Mechanisms
    2. 5.2 Nonspecific Immunity
  6. 6 Interactions with Fat Mass
  7. 7 Interactions with Hormones
    1. 7.1 Estrogen
  8. 8 Interactions with Aesthetics
    1. 8.1 Hair
  9. 9 Nutrient-Nutrient Interactions
    1. 9.1 Green Tea Catechins
    2. 9.2 5-HTP
    3. 9.3 PHY906
    4. 9.4 CKBM
  10. 10 Safety and Toxicology
    1. 10.1 General
    2. 10.2 Pregnancy

Don't Miss an Update!

Your e-mail is safe with us. We don’t share personal data.

1Source and Composition

1.1. Sources

Ziziphus Jujuba (Chinese Date) is a fruit-bearing plant belonging to the Rhamnaceae family and the Ziziphus genus, with the species of Zizyphus.[1] The botanical name for this plant is Ziziphus zizyphus, and commonly referred to as either Jujube or Jujuba (with the former being technically correct but as common); other names for the fruit of this plant are Chinese Date, Korean Date, Indian Date, or Red Date.

In Traditional Chinese Medicine (where it is called Suan Zao Ren), Jujuba is used for anodyne (pain-killing), antitumor, pectoral, refrigerant, sedative, stomachic, styptic and tonic medication; in Japan, Jujuba is used to treat chronic hepatitis or fullness in the chest and ribs.[2] It also appears to have antifungal and insecticidal properties,[3] and in some areas it is also reported to be antidiarrhoeal.[4]

Traditional Chinese Medicine for effects related to sedation, pain-killing, and relaxation

1.2. Composition

Jujube tends to contain as its terpenoid and saponin profile:

  • Jujubosides such as Jujuboside A (0.126-0.476mg/g), Jujuboside B (0.106-0.506mg/g)[5][6] as well as D[7] and E[8] as well as the amine compound Jubanine E[9]

  • Zizyphus saponin I and II (2.59-7.24mg/g and up to 3.05mg/g with some undetectable samples in the leaves; respectively)[10] and zizybeoside II at 130-410mcg/g[11]

  • Ceanothic acid (0.48-5.77mg/g in the leaves; 2.6-4.3mg/100g in berries), epiceanothic acid (0.57-7.63mg/g leaves; 13.8-19.6mg/100g berries), and ceanothenic acid (0.26-0.32mg/g but usually undetectable in leaves)[10][12]

  • Maslinic acid (0.44-1.66mg/g, sometimes undetectable in leaves; 41.5-66.3mg/100g berries), oleanolic acid (0.59-1.47mg/g in leaves; 18.3 -41.7mg/g berries) and Oleanonic acid (37.5-110.5mg/100g in berries)[10]

  • Betulinic acid (1.13-4.35mg/g in the leaves; 7.8-48.7mg/100g usually with one sample reaching 362.2mg/100g[12]) and zizyberanalic acid (1.13-2.37mg/100g, sometimes undetectable)[10] and Zizyberenalic acid[13]

  • Ursolic Acid (6.5-26mg/g berries) and 2α-hydroxyursolic acid (0.69-4.02mg/g in leaves)[13][10]

  • Alphitolic acid (0.89-3.99mg/g in leaves; 20.6-41.3mg/100g in berries),[10] Colubrinic Acid,[14] and Ursonic acid (22.3-95mg/100g)[12]

  • Coumaroyl compounds 3-O-cis-p-Coumaroylalphitolic acid and 3-O-trans-p-Coumaroylalphitolic acid (aka. Coumaroylmaslinic acid)[13]

  • Pomolic acid, Pomonic acid (10.7-175.4mg/100g in berries; highly variable), and Pomolic acid methyl ester[15][13]

  • Palmatic (1.5-2.4mg/g), Palmitoleic (0.3-1.7mg/g) and Oleic acids (8-50mg/g), no Lauric acid appears to exist in Jujuba[13][5]

  • Linoleic Acid (6-28mg/g), Myristic acid (0.1-0.8mg/g), Stearic acid (0.6-2.8mg/g), Arachidic acid (0.1-0.9mg/g), and Docosanoic acid (2.7-7.7mg/g)[5]

  • Oleanolic/Ursonic acid[13]

  • Various aromatic oils[16]

Whereas the flavonoid and polyphenolic profile contains:

  • Apigenin[17] and its diglucoside Isovitexin[17]

  • Swertish and Puerarin as monoglucoside flavonoids[17]

  • Spinosin and Isospinosin as diglucoside flavonoids, 6'''-feruloylspinosin and 6'''-feruloylisospinosin as related molecules[17] and 6'''- sinapoylspinosin[18]

  • (-)-epiafzelechin[19]

  • Rutin (Quercetin-3-O-Rutinoside)[13] at 15.78-32.74mg/g of the leaves[20]

  • Protocatechuic acid, Chlorogenic Acid, Gallic Acid, and Caffeic Acid[21]

With various other compounds including:

  • Nucleosides and Nucleobases, at 420-550mcg/g and mostly cAMP[22] and Uridine[23]

  • Dietary minerals such as Selenium (0.242mcg/g), Zinc (13.8mcg/g), and Iron (38.2mcg/g)[24]

With some bioactive polysaccharides (totalling 5.1-6.76% total weight in these two studies,[25][26] reporting a third (not available online) citing 4.42 to 7.91%;[26] these are 77.1% of dry weight, since the fruits have a high water content[27]) consisting of:

  • Neutral polysaccharide (arabinose, xylose, mannose, glucose and galactose at 0.3:0.2:0.2:1:0.7 ratios)[26] which appears to have anti-oxidant properties

  • Acidic polysaccharides containing rhamnose, arabinose, xylose, mannose, glucose and galactose in a ratio of either 0.3:9.6:0.1:0.4:1:12.1 or 3:16.8:1.2:0.2:1:12.2[26] that are also anti-oxidant in nature

  • Acidic polysaccharide with rhamnose, arabinose, xylose, glucose and galactose at 21:24:2:1:20[26]

General fruit bioactives including flavanoids, polysaccharides (carbohydrates), and some saponins and alkaloids; a fair bit of the ones in Ziziphus are fairly unique to the fruits

Many compounds are structurally similar to Apigenin, as Swertish is an Apigenin molecule with a methoxy (-OCH3) group at the 7-carbon instead of a hydroxy (-OH) group and a single glucose bound to it; Puerarin is an isomer of Swertish with the glucose bound to the 8 carbon rather than the 6 carbon.[17]

Spinospin and Isospinosin have a second glucose molecule bound to the first via an oxygen bridge at 4'', with the only differences being that Spinosin is built off of Swertish and Isospinosin off of Puerarin (with a molecule called Isovitexin built off of Apigenin).[17] Adding 6'''-feruloyl- to these structures is due to adding a ferulic acid molecule to the 6''' carbon on the second glucose.[17]

Tends to have a unique saponin profile, although some are common among a variety of plants (oleanolic acid, betulinic acid) while the flavonoid profile is also somewhat unique

Although bioactives tend to vary in concentration depending on cultivar, growing conditions, and soil conditions; the pulps tend to have more amino acids on a per gram basis when compared to the seeds and vice versa when it comes to flavonoid content, with the seeds posessing more than the pulp.[28]


2.1. Cholinergic Neurotransmission

200µg/mL of ziziphus jujuba (fruit) has failed to significantly inhibit acetylcholinesterase in vitro, inhibiting merely 2.4+/-2.6% of activity.[29]

2.2. Anxiety

The seeds of Ziziphus jujube have been implicated in reducing anxiety, in accordance with their traditional usage.[30] Oral administration of 0.5, 1, and 2g/kg of the ethanolic seed extract in mice was able to exert anxiolytic effects, and although it was equally effective as Buspirone and Diazepam (2mg/kg and 1mg/kg, respectively) at a black and white test (anxiety model[31]) at 500mg/kg, it appeared to become less potent at anxiolysis at 1 and 2g/kg while becoming more sedative in nature.[30]

Possible anxiolytic effects that rival Buspirone and Diazepam according to one study, lack of evidence otherwise; subsequently higher doses reduce anxiolysis in favor of sedation

2.3. Sedation

According to one systemic review on insomnia, the Traditional Chinese Medicine called Suan Zao Ren (which is Ziziphus Jujuba) appears to be the most commonly used insomniac treatment; conclusions on its efficacy in humans could not be drawn due to a lack of good evidence, however.[32]

The ethanolic extract of the seeds has been found to prolong hexobarbital-induced sleeping time at 1g/kg, but not 500mg/kg; no influence was noted on sleep latency (time required to fall asleep) and an impairment of waking locomotion was found at the dose that induces sedation.[30] This enhancement of sedation may be mediated via the flavonoid spinosin and vicariously through post-synaptic 5-HT(1A) receptors (serotonin receptor), with synergistic augmentation when paired with 5-HT1A antagonists at 15mg/kg spinosin.[33] This enhancement has also been noted with jujubosides, and was synergstic with 5-HTP at 2mg/kg.[34]

In a test on what constituents mediated these effects, the saponins and flavanoids (but not polysaccharides) appeared to have anti-locomotion properties but only the saponin component appeared to augment phenobarbitol-induced sleep.[35] At a dose of phenobarbitol that was seen as suboptimal (able to induce sleep in a minority of animals), the amount of animals who managed to sleep increased from 20% to 90% with the saponins (70% with flavonoids).[35]

Highly regarded as a sedative in Traditional Chinese Medicine with minimal Western trials on its efficacy, it appears to induce sedation in a relatively dose dependent manner and is synergistic with 5-HTP in this regard

2.4. Anti-Convulsant

At least one study conducted in rats where a seizure was induced noted that Ziziphus Jujube was able to attenuate the adverse effects of the seizure, including oxidative biomarkers and reducing the subsequent impairment in cognition.[36] A reduction in physical contractions was also noted, with absolute (100% protection) against pentylenetetrazole-induced seizures and 66.7% in electricity-induced convulsions at 1g/kg (the dose required for sedation), with lower doses being effective but to a lesser degree. Absolute protection was also noted with 300mg/kg Sodium Valproate.[36]

One study noted anti-convulsant effects, fairly potent according to it

2.5. Cognition

One animal study noted that, using middle-aged mice, 40-100mg/kg of the methanol extract for 30 days resulted in neuronal proliferation.[37] According to Ki67 and doublecortin immunostaining, neurons in the dendate gyrus were significantly enhanced at 40mg/kg and increased further at 100mg/kg (although not significantly different than 40mg/kg) with the percentage increase being 475% and 672%, respectively and relative to control.[37] Most of this enhancement was due to increased amounts of tertiary dendrites at both concentrations (354% and 579%, respectively), suggesting dendritic proliferation or an attenuation of dendritic loss associated with aging.[37] Actual cognition and learning was not assessed in this study despite the results suggesting improvements.[37]

One study noting cognitive enhancement in older rats, potentially related to dendritic proliferation (although causation not established); unknown potency relative to a reference drug

2.6. Neuroprotection

In response to Ischemia, oral ingestion of a methanolic extract of Ziziphus (dose undisclosed) appears to protect neurons from cell death (with Ischemia having 11.3% of control and ingestion of Ziziphus attenuating this to 58.4% as assessed by neuronal nuclei immunoreactivity four days after Ischemia) and was about as effective as the active control of 100mg/kg Ebselen.[38] This was thought to be secondary to anti-oxidant effects in the brain.[38]

Other possible mechanisms associated with neuroprotection could be antagonism of excitotoxicity. Jujuboside A appears to have anti-calmodulin activities in preventing calcium influx into glutaminergic neurons (although the concentration used in this study may not be applicable to oral Jujube ingestion; too high)[39] although similar effects have been noted at lower concentrations.[40] When a concentration of 0.5g/L was compared to the active control of phenobarbitol, is was slightly but significantly less effective at suppressing the number and amplitude of neuronal population spikes.[40] Even lower concentrations (0.05-5mcg/mL) appear to protect neurons from glutaminergic excitotoxicity, secondary to preventing an influx of calcium.[41]

Jujuboside A has been demonstrated to reduce excitatory postsynaptic potential in hippocampal neurons,[42] and has been shown to reduce EEG readings in rats given intracerebral injections of Jujuboside A.[43][40]

Appears to have protective effects in the brain in response to damage, but there is a lack of evidence connecting the in vitro studies (which appear quite promising) to practical interventions with oral Jujube


3.1. Constipation

The traditional method of preparation of Jujubes for the purpose of constipation relief to to boil 50g of Jujube fruits (20 whole fruits of 2–2.5 cm in length) to create a soup or drink, which may be related to extraction of a water soluble polysaccharide noted to have anti-constipative effects, and comprise 77% of the dry weight of jujube fruits.[27] This study extracted said polysaccharide according to the traditional methods, and when feeding to hamsters (40mg; equivalent to 50g fruits in humans) was able to increase fecal moisture content and decrease transit time in a dose-dependent manner.[27] Fecal ammonia was decreased in a similarly dose-dependent manner, and levels of short chain fatty acids in the colon increased.[27] These authors hypothesized that the increase in SCFAs explained the observed effects, as SCFAs have been previously linked to mucosal stimulation[44] although the decrease in mucosinase may also partly explain the moisture content.[27]

Currently one clinical trial has been conducted with Ziziphus Jujuba and constipation, where in persons with prolonged transit time (indicative of constipation) symptoms normalized in 84% of the Jujube group and 12% of the placebo group with better improvement in quality of life associated with Jujube.[45]

Jujube appears to be quite beneficial to intestinal motility, increasing fecal moisture and increasing transit time (anti-constipative). These effects are seen with the polysaccharide component, and may not be achieved with concentrated flavonoid capsules

4Cardiovascular Health

4.1. Artherosclerosis

Triterpenoids from Ziziphus fruits and seeds show efficacy in preventing macrophages (immune cells) from converting into foam cells, and may offer protection from artherosclerosis.[15] This study noted that out of 50 various herbs tested only Ziziphus, Foeniculi Fructus (Fennel Seed), and Hoelen were able to significantly suppress foam cell formation; herbs such as Astragalus membranaceus, the fruits of Schisandra chinensis, and Horny Goat Weed were ineffective at this role, and the bioactives in Ziziphus appears to be Oleanolic acid, Pomolic acid, and Pomonic acid; Pomolic acid methyl ester was ineffective.[15]

5Inflammation and Immunology

5.1. Mechanisms

The hydroalcoholic (alkaloid free) extract of Jujube at 100, 200, or 400mg/kg bodyweight was tested against two inflammatory models in rats (careegnan induced paw edema and cotton-pellet-induced granuloma) and found to dose-dependently reduce inflammation; when compared to 10mg/kg Indomethacin as active control, Ziziphus Jujube extract underperformed.[46] Serum Nitrate showed similar results, with a dose-dependent reduction with Jujube but more efficacy with Indomethacin.[46]

Appears to have general anti-inflammatory properties, less potent than the reference drug of Indomethacin (NSAID)

In mice, the essential oil of Jujube seeds at 1-10% is as effective (when applied topically) in suppressing skin inflammation as 1% Hydrocortisone as assessed by thickness and more effective in reducing water content of the ear.[47] There was not much dose-dependence observed when comparing 1% and 10% Jujube essential oil.[47]

May be able to exert anti-inflammatory properties topically when the oil is applied

5.2. Nonspecific Immunity

Ziziphus contains a collection of polysaccharides which may interact with the immune system.[48] In a mouse model fed the crude water-soluble polysaccharides at 50, 150, and 250mg/kg daily the two larger doses caused an increase in nonspecific immunity (as assessed by spleen and thymus index) and was able to proliferate splenocytes and macrophages in vitro.[48]

6Interactions with Fat Mass

Concentrations of 1-50mcg/mL Zizyphus Jujuba was able to suppress adipogenesis, with the chloroform fraction and ethyl acetate fractions showing efficacy while the water and butanol fractions were ineffective; with the ethyl acetate fraction, GPDH activity was reduced to 50% in vitro in response to 25ug/mL while 50ug/mL of the chloroform fraction reduced GPDH to 20%.[2] Subsequently, Zizyphus Jujuba was able to suppress lipid accumulation in these adipocytes and appeared to reduce the protein content of PPARγ, C/EBPα and C/EBPβ; three adipogenic proteins.[2]

Possible anti-obese effects, unexplored in animal models

7Interactions with Hormones

7.1. Estrogen

In a screening of estrogenicity between medical plants, the fruits of Ziziphus (95% ethanolic extract) failed to show any estrogenic or anti-estrogenic effects at concentrations below 1mg/mL.[49]

8Interactions with Aesthetics

8.1. Hair

The essential oils from the seeds of Ziziphus Jujuba appear to be able to induce hair regrowth in mice when topically applied.[50] This study noted that 1% and 10% (content of Ziziphus Jujuba oil in lotion) applied daily to the skin resulted in 11.4% and 12% longer hairs over 21 days, while 0.1% was not significantly effective.[50] Interestingly, these same doses of essential oils have been linked to fairly potent anti-inflammatory effects,[47] and may be related to hair growth.

9Nutrient-Nutrient Interactions

9.1. Green Tea Catechins

Green Tea Catechins (Green tea extract, GTE) appears to enhance the cytotoxicity of Jujube. This one study noted that in HepG2 cells (liver carcinoma cells) that cytotoxicity at 100ug/mL Jujube (chloroform extract) reduced viability of cells to 80%, and under the influence of 30ug/mL GTE this was enhanced to about 60%.[51] Green tea at 30ug/mL itself has no affect on viability, and this enhanced cell death was not seen in noncancerous liver cells under any condition.[51]

Mechanistically, an increased level of ROS (oxidation) occurred in the Jujube condition which correlated with cellular death; this was not enhanced or hindered by GTE[51] but instead the combination appeared to further change the cell cycle relative to control HepG2, where Jujube in isolation and the combination to a greater degree increased the amount of cells in the G1 phase while reducing the amount in G2/M and S phases.[51] The authors concluded that the synergism occured via enhancing G1 cellular arrest, which was confirmed by less DNA synthesis and improved Rb protein (mediator of G1) actions.[51]

Synergistic protection has also been noted when measuring the actions of APRIL, a protein that induces differentiation of HepG2 cells.[52]

Jujube and Green Tea Catechins appear to have synergistic anti-cancer properties, but the evidence is currently limited in size and only in one cell line

9.2. 5-HTP

5-HTP is an animo acid derivative that is made from tryptophan, and proceeds to be metabolized into the neurotransmitter serotonin and subsequently Melatonin; secondary to melatonin, it may help sleep. Jujube flavonoids have once been found to act synergistically with 2mg/kg 5-HTP in inducing sleep in rats.[34]

May be synergistic with Jujube in regards to sedation

9.3. PHY906

PHY906 is a term used to refer to a decoction of four herbs that has usage in Traditional Chinese Medicine under the name of Huang-Qin-Tang, one of which is Ziziphus Jujuba. The other three herbs are Paeonia lactiflora, Scutellaria baicalensis, and Glycyrrhiza uralensis; this combination apparently has some limited usage as cancer adjunct therapy.[53][54]

This combination has been used in vitro in a HepG2 cell line, and at the IC50 concentration of 0.85g/mL it affects 466 genes (amount common between fractions samples) with some of the more significant changes being a 405-fold increase in Carnitine Palmitoyltransferase 1A activity.[54]

9.4. CKBM

CKBM is a polyherbal formula consisting of Jujube, Glycine Max, Panax ginseng, Shizandra Chinensis, and Fructus crataegi.[55] This decoction was shown to suppress LPS-induced IFNγ release without inducing IFNγ itself, and induced the activity of ERK (one of the three major MAPK subsets) in one immune cell line while activating all major three subsets (ERK, JNK, p38) in another; suggesting potential immunomodulatory properties.[55]

10Safety and Toxicology

10.1. General

The LD50 of an ethyl acetate fraction of Jujube (concentrated flavanoids) appears to be around 2.5g/kg in female mice.[56]

10.2. Pregnancy

Jujube has apparently been used to prevent pregnancy, as was mentioned in the introduction of one study.[47] The only current study on the subject matter is one in female mice given an ethyl acetate fraction of Jujube (consisting of polyphenolics and flavanoids) at 60-240mg/kg bodyweight appeared to reduce the weight of the ovaries and inhibit the estrus cycle, with a greater potency than the other herb tested (Croton roxburghii).[56] This co-existed with an inhibition of delta-5-3β-HSD in a dose dependent manner, and all parameters were normalized 32 days after supplementation cessation.[56]

May be acutely anti-fertility, but there is limited evidence to support this notion

Scientific Support & Reference Citations


  1. Ziziphus jujuba (Chinese jujube) (Ziziphus sativa)
  2. Kubota H, et al Effect of Zizyphus jujuba extract on the inhibition of adipogenesis in 3T3-L1 preadipocytes . Am J Chin Med. (2009)
  3. Ahmad B, et al The antifungal, cytotoxic, antitermite and insecticidal activities of Zizyphus jujube . Pak J Pharm Sci. (2011)
  4. Tetali P, et al Ethnobotanical survey of antidiarrhoeal plants of Parinche valley, Pune district, Maharashtra, India . J Ethnopharmacol. (2009)
  5. Zhao J, et al Simultaneous determination of saponins and fatty acids in Ziziphus jujuba (Suanzaoren) by high performance liquid chromatography-evaporative light scattering detection and pressurized liquid extraction . J Chromatogr A. (2006)
  6. Seo EJ, et al Zizyphus jujuba and its Active Component Jujuboside B Inhibit Platelet Aggregation . Phytother Res. (2012)
  7. Liu QX, et al Structure identification of jujuboside D . Yao Xue Xue Bao. (2004)
  8. Bai YJ, et al Structure identification of jujuboside E . Yao Xue Xue Bao. (2003)
  9. Pandey MB, et al Three new cyclopeptide alkaloids from Zizyphus species . J Asian Nat Prod Res. (2008)
  10. Guo S, et al Simultaneous qualitative and quantitative analysis of triterpenic acids, saponins and flavonoids in the leaves of two Ziziphus species by HPLC-PDA-MS/ELSD . J Pharm Biomed Anal. (2011)
  11. Niu JW, et al Determination of zizybeoside II of Ziziphus jujuba by HPLC . Zhongguo Zhong Yao Za Zhi. (2008)
  12. Guo S, et al Characterization of triterpenic acids in fruits of ziziphus species by HPLC-ELSD-MS . J Agric Food Chem. (2010)
  13. Guo S, et al UHPLC-TOFMS coupled with chemometric method as a powerful technique for rapid exploring of differentiating components between two Ziziphus species . J Sep Sci. (2011)
  14. Lee SM, et al Anti-complementary activity of triterpenoides from fruits of Zizyphus jujuba . Biol Pharm Bull. (2004)
  15. Fujiwara Y, et al Triterpenoids isolated from Zizyphus jujuba inhibit foam cell formation in macrophages . J Agric Food Chem. (2011)
  16. Al-Reza SM, Bajpai VK, Kang SC Antioxidant and antilisterial effect of seed essential oil and organic extracts from Zizyphus jujuba . Food Chem Toxicol. (2009)
  17. Gao QH, et al Effect of Drying of Jujubes ( Ziziphus jujuba Mill.) on the Contents of Sugars, Organic Acids, α-Tocopherol, β-Carotene, and Phenolic Compounds . J Agric Food Chem. (2012)
  18. Isolation and Purification of Flavonoids from Ziziphus jujuba by High-Speed Counter-Current Chromatography
  19. Yano T, et al Unified approach to catechin hetero-oligomers: first total synthesis of trimer EZ-EG-CA isolated from Ziziphus jujuba . Org Biomol Chem. (2012)
  20. Akhmedov UA, Khalmatov KhKh Isolation of rutin from the leaves of Zizyphus jujuba Mill . Farmatsiia. (1967)
  21. Zhang H, et al Systematic evaluation of antioxidant capacities of the ethanolic extract of different tissues of jujube (Ziziphus jujuba Mill.) from China . Food Chem Toxicol. (2010)
  22. Li M, et al Extract process of cyclic adenosinemonophosphate (cAMP) in Ziziphus jujuba . Zhong Yao Cai. (2007)
  23. Guo S, et al Characterization of nucleosides and nucleobases in fruits of Ziziphus jujuba by UPLC-DAD-MS . J Agric Food Chem. (2010)
  24. Fatima I, Waheed S, Zaidi JH Essential and toxic elements in three Pakistan's medicinal fruits (Punica granatum, Ziziphus jujuba and Piper cubeba) analysed by INAA . Int J Food Sci Nutr. (2012)
  25. Characterization of water soluble polysaccharides from organs of Chinese Jujube (Ziziphus jujuba Mill. cv. Dongzao)
  26. Chang SC, Hsu BY, Chen BH Structural characterization of polysaccharides from Zizyphus jujuba and evaluation of antioxidant activity . Int J Biol Macromol. (2010)
  27. Huang YL, et al Effects of water-soluble carbohydrate concentrate from Chinese jujube on different intestinal and fecal indices . J Agric Food Chem. (2008)
  28. Choi SH, et al Distribution of free amino acids, flavonoids, total phenolics, and antioxidative activities of Jujube (Ziziphus jujuba) fruits and seeds harvested from plants grown in Korea . J Agric Food Chem. (2011)
  29. Oh MH, et al Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity . Phytomedicine. (2004)
  30. Peng WH, et al Anxiolytic effect of seed of Ziziphus jujuba in mouse models of anxiety . J Ethnopharmacol. (2000)
  31. Costall B, et al Exploration of mice in a black and white test box: validation as a model of anxiety . Pharmacol Biochem Behav. (1989)
  32. Yeung WF, et al Chinese herbal medicine for insomnia: A systematic review of randomized controlled trials . Sleep Med Rev. (2012)
  33. Wang LE, et al Potentiating effect of spinosin, a C-glycoside flavonoid of Semen Ziziphi spinosae, on pentobarbital-induced sleep may be related to postsynaptic 5-HT(1A) receptors . Phytomedicine. (2010)
  34. Cao JX, et al Hypnotic effect of jujubosides from Semen Ziziphi Spinosae . J Ethnopharmacol. (2010)
  35. Jiang JG, et al Comparison of the sedative and hypnotic effects of flavonoids, saponins, and polysaccharides extracted from Semen Ziziphus jujube . Nat Prod Res. (2007)
  36. Pahuja M, et al Hydroalcoholic extract of Zizyphus jujuba ameliorates seizures, oxidative stress, and cognitive impairment in experimental models of epilepsy in rats . Epilepsy Behav. (2011)
  37. Hwang IK, et al Zizyphus enhances cell proliferation and neuroblast differentiation in the subgranular zone of the dentate gyrus in middle-aged mice . J Med Food. (2011)
  38. Yoo KY, et al Zizyphus attenuates ischemic damage in the gerbil hippocampus via its antioxidant effect . J Med Food. (2010)
  39. Zhang M, et al Inhibitory effect of jujuboside A on glutamate-mediated excitatory signal pathway in hippocampus . Planta Med. (2003)
  40. Shou CH, et al Inhibitory effect of jujuboside A on penicillin sodium induced hyperactivity in rat hippocampal CA1 area in vitro . Acta Pharmacol Sin. (2001)
  41. Park JH, et al Protection of NMDA-induced neuronal cell damage by methanol extract of zizyphi spinosi semen in cultured rat cerebellar granule cells . J Ethnopharmacol. (2004)
  42. Shou C, et al The inhibitory effects of jujuboside A on rat hippocampus in vivo and in vitro . Planta Med. (2002)
  43. Inhibitory effects of jujuboside A on EEG and hippocampal glutamate in hyperactive rat
  44. Grider JR, Piland BE The peristaltic reflex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF . Am J Physiol Gastrointest Liver Physiol. (2007)
  45. Naftali T, et al Ziziphus jujuba extract for the treatment of chronic idiopathic constipation: a controlled clinical trial . Digestion. (2008)
  46. Goyal R, Sharma PL, Singh M Possible attenuation of nitric oxide expression in anti-inflammatory effect of Ziziphus jujuba in rat . J Nat Med. (2011)
  47. Al-Reza SM, et al Anti-inflammatory activity of seed essential oil from Zizyphus jujuba . Food Chem Toxicol. (2010)
  48. Li J, et al Screening of a functional polysaccharide from Zizyphus Jujuba cv. Jinsixiaozao and its property . Int J Biol Macromol. (2011)
  49. Kim IG, et al Screening of estrogenic and antiestrogenic activities from medicinal plants . Environ Toxicol Pharmacol. (2008)
  50. Yoon JI, Al-Reza SM, Kang SC Hair growth promoting effect of Zizyphus jujuba essential oil . Food Chem Toxicol. (2010)
  51. Huang X, et al Green tea extract enhances the selective cytotoxic activity of Zizyphus jujuba extracts in HepG2 cells . Am J Chin Med. (2008)
  52. Huang X, et al Combination of Zizyphus jujuba and green tea extracts exerts excellent cytotoxic activity in HepG2 cells via reducing the expression of APRIL . Am J Chin Med. (2009)
  53. Liu SH, Cheng YC Old formula, new Rx: the journey of PHY906 as cancer adjuvant therapy . J Ethnopharmacol. (2012)
  54. A comprehensive platform for quality control of botanical drugs (PhytomicsQC): a case study of Huangqin Tang (HQT) and PHY906
  55. Chan AS, et al CKBM stimulates MAPKs but inhibits LPS-induced IFN-gamma in lymphocytes . Phytother Res. (2006)
  56. Gupta M, et al Anti-steroidogenic activity of the two Indian medicinal plants in mice . J Ethnopharmacol. (2004)