Conjugated Linoleic Acid

CLA are fatty acids that acts on a system known as PPAR to induce fat loss. At least, that is what the theory says. CLA too weakly affects PPAR receptors to really induce fat loss in an appreciable amount. TTA appears more promising.

This page features 166 unique references to scientific papers.


Confused about what actually Works?
MUST GET: Supplement Stack Guides - Saving You Money & Time

   

Conjugated Linoleic Acid, or CLA, is a term used to refer to a mixture of fatty acids that have the general structure of linoleic acid (18 carbons in length, 2 double bonds) where the double bonds exist two carbons away from each other; they are all polyunsaturated fatty acids, and some may be trans fatty acids.

Although many exist, only two are commonly referred to. One called c9t11 (cis-9, trans-11) and the other t10c12 (trans-10, cis-12), named after what bond occurs where on the side chain.

CLA has been investigated to be a fat burner and health promoting agent due to its effect on a molecular signalling receptor family named PPAR which is related to fat burning, steroid signalling, inflammation, and glucose/lipid metabolism.

However, human studies on CLA are very unreliable and the overall effects seen with CLA are not overly potent as well as sometimes contradicting. CLA is a good research standard to investigated fatty acids and the PPAR system, but its usage as a supplement for personal goals is quite lacklustre.

Follow this Page for updates

Confused about Supplements?
Get the Stack Guides

Also Known As

CLA, Rumenic Acid


Do Not Confuse With

Linoleic Acid (the basic fatty acid)


Things to Note

  • CLA is non-stimulatory
  • CLA tends to work better in obese and sedentary individuals, but even in this population it is quite unreliable in exerting benefit

Is a Form of


Goes Well With

  • Fucoxanthin (May increase the fat burning effects of Fucoxanthin)

Does Not Go Well With


Caution Notice

Examine.com Medical Disclaimer

Supplementation of conjugated linoleic acid (CLA) tends to be in the range of 3,200-6,400mg daily, taken with meals. This dosage assumes that approximately 70% of the product by weight is comprised of one of the two main active isomers, cis-9 trans-11 (c9t11) and trans-10 cis-12 (t10c12).

Limited studies using higher doses than the aforementioned have failed to find additional benefit, and while this could simply be due to the unreliability of CLA supplements it also means that there is no evidence that doses higher than the above are more effective.


CLA appears to be a good research molecule, since there is a lot of evidence after human ingestion and it was one of the first of its mechanisms (PPARa / PPARy modulator) to be used.

A pretty poor fat burner, and even more unreliable than it is bad at burning fat. It might make you lose enough fat to compensate for that cookie you had once.

It has no astounding other affects on health or anything, it just seems to be quite an overhyped and uneventful molecule(s)


Kurtis Frank

The Human Effect Matrix looks at human studies (excluding animal/petri-dish studies) to tell you what effect Conjugated Linoleic Acid has in your body, and how strong these effects are.
GradeLevel of Evidence
ARobust research conducted with repeated double blind clinical trials
BMultiple studies where at least two are double-blind and placebo controlled
CSingle double blind study or multiple cohort studies
DUncontrolled or observational studies only
Level of Evidence
EffectChange
Magnitude of Effect Size
Scientific ConsensusComments
AHDL-C

Insufficient evidence to support significant influences on HDL-C

AWeight

CLA is considered ineffective for weight loss to the high degree of unreliability in the results, with most evidence suggesting no effects and some sparse evidence to suggest... show

AFat Mass

Evidence is too unreliable to conclude an inhernet effect of CLA on fat mass. There may be a context-dependent reduction in body fat and explanation for the observed variability,... show

ALean Mass

Minor

Some evidence that CLA can preserve lean mass during fat loss in an obese cohort of patients, but even in this subgroup the results are highly unreliable.

AInsulin Sensitivity

For the most part, ineffective; too unreliable to reach any conclusions in regards to the efficacy of CLA. There appears to be some manner of interaction, but both sensitization... show

BTriglycerides

Minor

May possible increase triglycerides, but is unreliable in doing so and not overly potent.

BLiver Enzymes

Inconsistent and unreliable effects on liver enzymes, no significant influence is thought to exist.

BLDL-C

Insufficient evidence to support decreases of LDL-C and evidence to support no influence whatsoever.

BInflammation

Insufficient evidence to support significant changes in inflammatory status.

BC-Reactive Protein

For the most part, CLA is seen as ineffective.

BTNF-Alpha

Insufficient evidence to support changes in TNFa, a biomarker of inflammmation.

BAdiponectin

No alterations in adiponectin has been noted with CLA supplementation

BBlood Glucose

Insufficient evidence to support reliable increases in blood glucose

BInsulin

No significant influence on fasting insulin levels

BHbA1c

No significant reduction (or increase) in HbA1c levels following CLA supplementation

BMetabolic Rate

Currently thought to be somewhat ineffective as the evidence supporting an increase are confounded with food intake whereas the evidence supporting no increase is more... show

CBlood Pressure

No significant interaction between CLA and blood pressure

COxidation of LDL

No significant protective or augmenting effects on the oxidation rates of LDL-C.

CAntioxidant Potential

Does not appear to influence oxidative status in the body.

CDNA Damage

Insufficient evidence to suggest alterations in the rate of DNA damage with CLA ingestion.

CBlood Flow

Insufficient evidence to support changes in blood flow.

C8-isoPGF2a

Minor

8-isoPGF(2)a is normally a biomarker of lipid peroxidation, but CLA may be causing a false positive (as fatty acids are known to interact with the enzymes in question and... show

CFat Oxidation

Minor

May influence fat oxidation, but more evidence is required.

CLeptin

Not enough evidence to support alterations in circulating leptin due to CLA ingestion.

CAppetite

Mixed evidence, and even the promising evidence noted that the degree of appetite suppression was insufficient to suppress food intake.

CSubjective Well-Being

Insufficient evidence to support an inherent contentment boosting effect, as the lone study was confounded with weight loss.

CCell Adhesion Factors (Youth)

No significant influence on cell adhesion factors

CBone Mineral Density

No evidence to support a link between CLA and alterations in bone mineral density

DHeart Rate

No significant interaction between heart rate and CLA supplementation

DAsthma

No significant interaction between CLA supplementation and asthmatic symptoms

DKidney Function

No significant influence of CLA supplementation on renal functioning

DCell Adhesion Factors (Elderly)

No significant alterations in cellular adhesion factors (linked to artherosclerosis via the immune system)

DSymptoms of Crohns Disease
DInterleukin 2
DInterleukin 6

Studies Excluded from Consideration

Omitted due to having polar opposite effects on lipids dependent on isomer used (c9t11 v. t10c12) which doesn't fit in the Rubric which assesses CLA as a whole[1]


Disagree? Join the Conjugated Linoleic Acid Discussion

Table of Contents:


Edit1. Structure and Sources

1.1. Sources

CLA is a naturally occurring collection of fatty acids, of where the entire group are referred to as 'CLA'. CLA stands for Conjugated Linoleic Acid, and are quite literally linoleic acid (omega-6) fatty acids that are conjugated with a double bond at some point on the fatty acid.[2] They tend to be found in food products (including meats) from ruminant animals, and include:

  • Meat, where CLA can be stored in animals that humans eat and the humans that eat the animals[3][4][5]
  • Milk[6]
  • Cheeses, in high amounts (1.5% or so) in Pecorino Cheese from sheep[7]
  • Butter, although enrichment alters the precise CLA levels[8]
  • White Button Mushrooms (Agaricus bisporus)[9]

Estimated human intake of CLA is around 0.5-1g daily at best,[10] with other estimates lower at 350-430mg (Germany), 151-210mg (USA) and matching the older estimate of 0.5-1g daily in Australia.[11] Studies using low (0.5-1g) doses of CLA can potentially have their benefits replicated through foods, but higher doses would require supplementation.

When consuming food via natural sources, the c9t11 isomer (to be discussed) predominates at 75-80% of total CLA by weight.[11] Since CLA was first isolated in ruminant animals, the c9t11 isomer is sometimes also referred to as rumenic acid. Dairy in general (milk, butter, cheeses) tend to have a range of CLA between 0.25-1.5% of total fatty acids as CLA, excluding possible CLA secondary to vaccenic acid.[12][13]

Meat, Dairy, and white button mushrooms?

1.2. Structure

Conjugated Linoleic Acid (CLA) is a term used to refer to any linoleic acid (omega-6) fatty acid with conjugated bonds.[14] They are found in high amounts in animal products, and can be synthesized in vivo in mammals via the delta-9-desaturase enzyme[2] and can be synthesized from the trans fatty acid, vaccenic acid, after humans consume the trans-vaccenic acid.[15]

Of these isomers two are more heavily researched and reported to have significantly unique effects in the body; the trans-10,cis-12 isomer (t-10,c-12) and the cis9,trans-11 isomer (c-9,t-11). These two are used mostly because of the heavier amounts of research into them, which provides more evidence for their safety.[16]


Edit2. Isomers of CLA

As CLA is a mixture of isomers, each isomer could have different effects; for the purpose of this section, it will be divided into the c9t11 (cis-9, trans-11) and t10c12 (trans-10, cis-12) isomers, and then consideration given to all others collectively. Each Isomer can be considered as having its own mechanisms but to a unique structure.

2.1. c,9-t,11

This CLA isomer, when fed to humans via 3.4g of mixed CLA isomers for 4 weeks, has been associated with changes in 93 genes by more than 1.5-fold differences (relative to control), of which 44 genes have crossover with t10c12 and 20 genes are uniquely affected when only both isomers are considered.[17]

When consuming food via natural sources, the c9t11 isomer (to be discussed) predominates at 75-80% of total CLA by weight.[11] Since CLA was first isolated in ruminant animals, the c9t11 isomer is sometimes also referred to as rumenic acid. It has been shown in vitro to promote neuronal stem cell differentiation while the t10c12 isomer hindered neuron differentiation at doses ranging from 2-20uM.[18]

This particular isomer is associated with some neuronal benefits and could potentially be neuroprotective (understudied) and is associated with increased insulin sensitivity and glucose control; it is not associated with increased lean mass, decreased fat mass, or inflammation like the other isomer is.

c9t11 is the 'natural' CLA isomer due to it being in high levels in food source relative to others, and although it may be 'healthy' it is not significantly associated with fat burning effects

2.2. t,10-c,12

This CLA isomer, when fed to humans via 3.4g of mixed CLA isomers for 4 weeks, has been associated with changes in 265 genes by more than 1.5-fold differences (relative to control), of which 44 genes have crossover with t10c12 and 20 genes are uniquely affected when only both isomers are considered.[17] It appears to be more biologically active than the c9t11 isomer in general.

Oral supplementation of t10c12 has been demonstrated to acutely induce insulin resistance in obese men,[19] and is theorized to do this via increasing lipid peroxidation (a form of oxidative stress) as measured by urinary isoprostanes.[20] The latter study compared a 3.4g CLA mixture (equal parts c9t11 and t10c12) against t10c12, and found four-fold higher urinary isoprostanes with t10c12 relative to CLA (0.25+/-0.07 increase relative to baseline in CLA, 1.04±0.7 increase in t10c12) which was correlated with t10c12's greater suppression of insulin sensitivity independent of all other variables.[20] t10c12's ability to induce lipid peroxidation, as assessed by urinary 8-iso-PGF2α, is much greater than that of c9t11; increases of up to 578% of baseline levels have been seen with isolated t10c12,[21] yet increases of 25% noted with similar doses of c9t11.[22] As increased 8-iso-PGF2α urinary levels may be a diagnostic problem (See Lipid Peroxidation section), these results also imply that t10c12, in vivo, is more heavily involved in peroxisomal oxidation.

t10c12 is seen as the more bioactive isomer as it pertains to fat loss; being inversely correlated with body weight in diabetics[23] and showing preferential disposition into adipose tissue (fat mass) over skeletal muscle.[24] Studies in animal models suggest that the t10c12 isomer causes many of the effects on adipocytes such as increased LPL expression and triglyceride release,[25][26] and increased UCP2 expression.[27] When investigated in rats, 0.4% of t10c12 in the diet for 8 weeks (when compared to c9t11) was the causative isomer behind a previous notion that CLA can increase insulin sensitivity by proliferating fat cells and reducing individual adipocyte size (with no overall change in fat mass)[28] whereas c9t11 was no different than control in reducing adipocyte size.[29] Reductions in blood pressure seen with CLA, thought to be secondary to effects in fat cells, are also exclusive to t10c12.[25]

t10c12 appears to either be more potent or outright causative of changes in fat mass and insulin sensitivity/resistance seen with CLA, and the increase in urinary 8-iso-PGF2α levels is also greatly attributed to t10c12

Interestingly, t10c12 appears to also benefit muscle mass in rats when compared to c9t11 when both are 0.5% of the diet in mice although all groups (both isomers, and a mixture) were better than control.[30] The mixture (both isomers at 0.25%) was the best, suggesting synergism between the two isomers in this regard.[30] These effects may have been secondary to t10c12's better benefits to anti-oxidant enzymes in the muscle cell. Other studies implicate t10c12 as the active isomer in increasing endurance running capacity in mice due to partitioning energy usage to fatty acids rather than glucose, causing an indirect preservation of glycogen.[31]

A similar study as the above (0.5% t10c12 against c9t11 and a CLA mix group) found t10c12 to be more effective at preventing osteoporosis in mice, possibly secondary to effects on adipocytes; the effects noted with t10c12 were significantly better than c9t11, but not significantly better than the mixture.[32]

t10c12 also appears to upregulate the LDL receptor in liver cells (receptor that takes up low-density lipoprotein from the body) whereas c9t11 had no effect in vitro.[33]

Other effects of CLA, benefits to bone health and muscle metabolism, may also be more effectively accredited to t10c12 rather than c9t11

2.3. Other Isomers

Other isomers that exist are 9trans, 11trans CLA (9t11t),[11] as well as c11t13 and 8t10c.[16]

A unique CLA isomers known as 9-hydroxy10-trans-12-cis CLA (9-HODE) from Valeriana fauriei and adlay seeds alongside another hydroxylated CLA known as 13-HODE, both of which were able to inhibit fat accumulation in adipocytes with EC50 values ranging from 0.17-0.40ug/mL and IC50 values of 0.29-0.41ug/mL; effects about 8-fold more potent than the basic CLA isomer t10c12.[34] 9-HODE and related hydroxylated CLA molecules have previously been shown to be a ligand of PPARy (similar to CLA)[35] with a potency similar to 10uM troglitazone (pharmaceutical) when at 20uM, and the stress-inducible GPCR G2A.[36][37]

An oxygenated metabolite of CLA found in tomato products, 13-oxo-CLA (c9t11 isomer), was found to be almost twice as potent as the c9t11 CLA isomer at 20uM, and slightly more potent than 9-oxo-CLA (an isomer); additionally, 13-oxo-CLA was able to improve metabolism of obese mice when fed at 0.02% of the diet.[38]

Some interesting configurations of linoleic acid here for future research, no practical application of these at this moment in time; however

2.4. Similarities

Both isomers have been found to increase anti-oxidant enzyme expression in vitro via modulation of NF-kB expression[39] and the combination, when put into macrophages, appears to be suppressive of NF-kB activation (an anti-inflammatory effect).[40]


Edit3. Pharmacology

3.1. Distribution

In a study on 22 healthy Japanese persons with a slightly overweight BMI of 20+/-0.4, 2.2g of CLA daily for 3 weeks (47.3% c9t11, 50.7% t10c12) was able to significantly increase CLA content of red blood cells and plasma about four-fold relative to 2.2g linoleic acid.[14] With RBCs having 0.06% total fatty acids as CLA in control, and at 4 weeks the test group between 0.31-0.5%; plasma increased from 0.12% to between 0.26-0.92% of total fatty acids.[14] An increase of CLA content of lipoproteins (HDL, LDL, vLDL) was also observed after 4 weeks, despite these lipoproteins not significantly changing in their concentrations in the blood.[14] A similarly dosed study[41] found the same trends, but slightly lower changes in the blood of Irishmen.

Seems to take more than 1 week to build up body stores, and stays in the body at least one week after cessation of supplementation; begins to be cleared out 2 weeks after cessation.


Edit4. Interactions with Lipid Metabolism

4.1. Triglycerides

2.2g of CLA, with about 1g of each main isomer (c9t12, t10c12) was able to elevate blood triglyceride values from 65.6+/-8.7mg/dL to 79.9+/-7.6mg/dL (121% of baseline value) after 3 weeks of supplementation, with the effects lasting 2 weeks after cessation, in young healthy humans.[14]

4.2. Cholesterol

2.2g of CLA, with about 1g of each main isomer (c9t12, t10c12), in young healthy Japanese persons was unable to significantly influence HDL, LDL, or vLDL concentrations after 3 weeks of supplementation.[14]


Edit5. Interactions with Glucose Metabolism

5.1. Insulin Sensitivity Mechanisms

The c9t11 isomer has been demonstrated to be anti-diabetic, being able to reduce the occurrence of diet-induced obesity in animal models.[42][43] Possibly secondary to increased insulin sensitivity, c9t11 is also associated with improvements in lipid biomarkers.[44][1]

The t10c12 isomer is known to be pro-diabetic, causing inflammation in a fat cell which is linked to the fat loss effects of CLA (by hindering glucose and fatty acid uptake into fat cells) as well as effects on insulin sensitivity (by preventing glucose entry into a fat cell, it circulates for greater time). In vitro, the link between inflammation in a fat cell and diabetic effects is appears to ultimately be due to cytokines (inflammatory signals)[45][46] and initially dependent on calcium release in fat cells.[47] t10c12 is also known to be an inhibitor of PPARy,[48] which although is an anti-obesity mechanisms (by preventing differentiation of fat cells) is also pro-diabetic by reducing glucose uptake into fat cells.[49]

The difference is demonstrated when feeding each isomer to rats, where c9t11 at 0.5% prevents diet induced insulin resistance while t10c12 at 0.5% increased insulin resistance while also increasing lean mass and decreasing fat mass[42] while a mixture somewhat lessens the impact of each isolated isomer.[43]

Both isomers appear to have different effects on insulin sensitivity, with c9t11 being insulin sensitizing and t10c12 being able to induce insulin resistance in fat cells; the fat loss effects of CLA, however, appear to be dependent on this

5.2. Insulin Sensitivity Interventions

Insulin sensitivity is a relation of how effective insulin is in reducing blood sugar levels or in activating cells to induce 'insulin-like effects', with a more insulin sensitive person requiring less insulin units to do X amount of work and a more resistant person requiring more units of insulin to do the same amount of work.

A few human interventions have been conducted on insulin sensitivity in response to CLA supplementation, and two have demonstrated how hetereogeneous the results can be. The first study of 10 sedentary and lean men given 3.2g of a 50:50 isomer mix,[50] found 2 subjects with an increase in insulin sensitivity and 6 with a decrease, with 2 not having any significant influence. Another study, which had an average 29% decrease in insulin sensitivity (as assessed by the insulin sensitivity index; mathematical model) found that out of 9 subjects, three noted an increase in insulin sensitivity (ranging from 9-13% increases) and the other 6 noted decreases (ranging from 9-79%).[51] Both of these studies were done by the same research group, and the authors hypothesized that age may play a role (older at more risk) and that genetic predisposition to diabetes may play a role.[51]

The typical results are more mixed, with some leaning towards lowering insulin sensitivity[22][52][51] but most research suggesting any effects on insulin sensitivity or resistance are not statistically reliable.[53][54][55][56][8][57][58]

At the outset, it appears more of the data is leaning towards CLA being somewhat inert or irrelevant when concerning insulin sensitivity and resistance. However, some data do suggest it can cause insulin resistance; when insulin resistance is found, the clinical significance of which is unreliable but potentially of concern

In the studies noting increased insulin resistance, doses of CLA used were either 3-3.2g CLA of mixed isomers[52][51] or the same dose of the lesser potent c9t11;[22] Two studies were conducted in obese persons[52][22] and one in overweight,[51] but the state of overweight (as well as the state of type II diabetic or those with metabolic syndrome) doesn't appear to be relevant as at least four studies in obese or overweight persons have shown no effects on insulin resistance at the same oral dose of CLA,[54][53][56][58] and two studies noting insulin resistance increases have been done in diabetics[52] and non-diabetics,[51] which is matched with studies showing null results in type II diabetics[58] and non-diabetics.[53][8] As insinuated prior, the oral dose does not appear to be related as the majority of studies mentioned in this section use doses of 2.5-3.2g active CLA isomers. Insulin resistance was calculated by HOMA,[52] hyperinsulinemic euglycemic clamp,[22] and by mathematical modelling of kinetics of glucose and insulin;[51] as studies assessing insulin sensitivity and finding null results also use a variety of analytical methods, it is unlikely that the cause for discrepancy in the data is due to research error.

The discrepancy appears to come from whether or not insulin resistance was assessed by a glucose challenge, or the insulin sensitivity in the face of experimentally induced high blood glucose to replicate a meal. All three studies noting increases in insulin resistance used glucose challenges[52][22][51] and another study noting variability but no change used a glucose challenge.[50] In these studies, changes in insulin resistance were 14.4%,[22] 19%,[52] and 29%.[51] The latter study demonstrated a range of 9-79%, however, showing large variability.[51] Other studies noting no significant influence used fasting blood glucose and insulin readings, which are indicative of a chronic change in glucose metabolism.

The state of the body prior to CLA usage does not seem to be well correlated with how CLA influences insulin sensitivity, but it appears CLA inducing insulin resistance relies greatly on co-ingested (or co-injected) carbohydrate. It is possible CLA induces short term changes in insulin resistance, that are reversible upon cessation of supplementation and only noticeable during carbohydrate consumption

Still no current sufficient explanation as to the variance seen in persons who get a glucose spike


Edit6. Interactions with the Liver

6.1. Liver Enzymes

2.2g CLA daily for 3 weeks was not able to significantly influence circulating levels of liver enzymes in otherwise healthy Japanese adults.[14]

6.2. Liver Fat

In animals, particularly mice, CLA supplementation and particularily the t10c12 isomer lead to hepatic steatosis; otherwise known as fatty liver build-up which tends to precede metabolic abnormalities.[59][60][61][62]

Human studies investigating hepatic steatosis (fatty liver buildup) do not note the same results found in animals, suggesting the difference may be species dependent.[63] One review study summarizing 64 interventions across four species[64] concluded that humans were less affected by CLA than were hamsters and rats, but mice hyperrespond to CLA supplementation and are sensitive to hepatic steatosis from CLA.[64]

The notion that CLA induces fatty liver does not appear to be of concern to humans, and is associated with mice for some reason


Edit7. Interactions with Fat Mass

7.1. Distribution

In a study comparing the kinetics of the c9t11 isomer against the t10c12 isomer, it appears the t10c12 isomer of CLA has a greater affinity for being stored in triglycerides in adipose (body fat) tissue whereas the c9t11 has relative affinity for skeletal muscle.[24]

Aside from potency on the soon to be mentioned mechanisms, t10c12 seems to go to body fat more than c9t11

7.2. Mechanisms

The main mechanism that is touted to CLA isomers is their ability to bind to and activate the Peroxisome Proliferator activated Receptor alpha (PPARa) which is highly expressed in the liver but also kidney and heart, with the c9t11 isomer having the most potency on the receptor, followed by t10c12 and then other isomers.[65] IC50 values observed were 140+/-90uM for c9t11 and 200+/-30uM for t10c12. c9t11 CLA is about 8-fold more potent than linoleic acid (parent non-conjugated omega-6) at inducing PPARa activity.[65] The biological effects of PPARa activation have been seen after oral administration in rats[66] and is hypothesized to increase fat burning in the liver.

Additionally, CLA has been demonstrated in vitro and in vivo in humans[67] to inhibit PPARy, the PPAR isomer that is found in fat cells and moderates fat cell proliferation and accumulation of triglycerides (a PPAR that, although obesogenic, may also protect from diabetes) and this inhibition is attributed to the t10c12 isomer of CLA.[48] Interestingly, while t10c12 was demonstrated to inhibit PPARy c9t11 was found to activate PPARy in human fat cells in vitro.[48][68][69] Interestingly, genetic variations in PPARy are associated with variations in genetic response to CLA supplementation in humans and may be a research avenue for explaning inter-individual differences.[17]

When looking at the third main type of PPAR receptor (PPARb/d), the metabolite of CLA known as furan-CLA appears to be a weak agonist.[66] No evidence has established this as biologically relevant.

CLA mixtures are known as PPAR modulators, being able to activate PPARa (located mostly in the liver, related to lipid reducing effects and possible some body fat loss effects) and to both activate and inhibit PPARy in body fat cells (depending on isomer) and to 'moderate' the PPARy receptors and subsequent body fat regulation

CLA is claimed to reduce fat via suppressing expression of lipogenic (fat gaining) enzymes such as fatty acid synthase, acetyl CoA Carboxylase, and inhibiting Lipoprotein Lipase (LPL).[70][71] These effects have been demonstrated to be a result of PPARy inhibition from the t10c12 isomer.[48]

Then CLA is further touted to increase energy expenditure via increases in Carnitine Palmitoyltransferase-1 (CMPT-1) and acyl-CoA oxidase,[72][73] and these have been linked to the t10c12 isomer even when investigating fat burning effects in the liver.[72][73]

The enzyme Fatty Acid Synthase (FAS) has been a locus of research as CLA appears to interact with it, but studies are mixed with either a decrease of activity in this enzyme via less mRNA (good for fat burning)[74][71][75][62], no significant effect,[76][77] or a paradoxical increase in activity.[76]

Some protein changes in the body are due to the aforementioned PPARa or PPARy modulation, whereas others may be influenced either directly or by other means by CLA supplementation; t10c12 seems to be more relevant in these mechanisms

Regardless of mechanisms, in vitro studies consistently note it has the ability to release glycerol from adipocytes (fat cells), indicative of increased fat release from triglycerides and subsequent fat burning.[78][79][80][81][82][83]

7.3. Species Differences

There appears to be significant differences in results between humans and research animals in regards to the effects of CLA.[64][84] It is routinely noted that animal studies constantly have better results in fat loss than do human studies, which report lacklustre effects of CLA; this may be secondary to animals tending to respond more to PPARa activation; a hypothesized mechanism of CLA.[85]

Interestingly, mice are a good research animal if purposely seeking out an animal polar opposite of humans. Mice routinely experience significant fat loss in response to CLA in the range of 60-80%[64][86][87] yet also are the only species to note hepatomegaly (growth of the liver) and fatty acid buildup in the liver (hepatosteatosis) in response to CLA.[64]

Appears to be species differences, with laboratory animals more responsive to the mechanisms of CLA; thus, extrapolation from animal studies is most likely not valid if looking for clinical significance or potency of CLA

7.4. Metabolic Rate

Studies investigating CLA and metabolic rate are mixed. At least one study has noted an increase in metabolic rate when 3.76g of CLA, with a 35% c9t11 and 35% t10c12 content was used via yoghurt for 14 weeks.[67] Via indirect calorimetry, metabolic rate was found to be increased by 4% although no significant weight loss was recorded over the 14 weeks in obese subjects; diet not controlled.[67] One other study has noted increases in metabolic rate, but attributed this to a gain in lean mass induced by refeeding (in a study aimed to see whether CLA could suppress weight regain after weight loss, which it failed to do but induced nutrient partitioning to lean mass); an indirect form of increasing the metabolic rate.[88]

Several studies have concluded no differences in metabolic rate including 4g of CLA for 12 weeks in overweight but healthy persons,[51] no overall difference in metabolic rate despite altered fat oxidation during sleep 4g CLA daily,[89] or 12 weeks of CLA at 3.9g daily in exercising and normal weight persons.[90]

Some studies note an increase in metabolic rate, but either lack practical significance or are otherwise confounded; for the most part, CLA does not appear to increase nor suppress metabolic rate

7.5. Intervention studies

CLA has been implicated in fat loss in several trials. In Chinese persons at 1.7g CLA (50/50 isomers) daily for 12 weeks by 0.69kg relative to placebo's 0.07kg and no changes in lean body mass,[63] in overweight and obese (BMI 25-35) with 3.4g of 50/50 isomer CLA for 12 weeks causing fat loss without weight loss (increased lean mass) with doses below 3.4g being ineffective,[91] at 0.6g CLA thrice a day in obese humans with exercise, able to cause a shift towards fat loss indepedent of weight,[92]4.5g of supplementation with 3.4g of CLA isomeric mixture (50/50) in 85 persons of mostly obese and metabolically unwell (metabolic syndrome) with a 1.13kg reduction of body weight over 4 weeks,[93] 0.5+/-2.1% body fat over 6.5-7.5 months in obese children given 3g CLA daily,[94] a −1.25+/-0.71kg loss over 16 weeks in postmenopausal and obese diabetic women (relative to Safflower Oil as a control, losing 0.11+/-0.55kg) and −0.86 ± 0.59kg over another 16 weeks during study crossover, relative to a 0.90 ± 0.79kg gain in Safflower,[95] 6 months of 3.2g CLA daily losing 0.6+/-2.5kg, relative to the placebo group (Safflower Oil) gaining 1.1+/-3.2kg,[89] a loss of 0.6kg fat mass after 3g CLA (Tonalin) via milk for 12 weeks in overweight and obese persons with pre-metabolic syndrome,[56] a 2.6% greater loss (of whole fat mass) relative to placebo when consuming either CLA mixtures or the t10c12 isomer at 4.2g for 12 weeks,[96] a 1.0+/-2.2kg fat loss over 6 months with no dietary controls with 3.6g CLA daily,[53] and a loss of either 1.7 ± 3.0kg fat mass with CLA fatty acids at 3.6g for a year, or 2.4 ± 3.0kg loss with CLA triglycerides for the same time period where placebo gained 0.2kg.[97] A recent study using microencapsulated CLA noted reductions in weight of −2.68%+/-0.82% within 30 days, although no more reductions appeared to occur up to 90 days (with placebo reaching −1.97%+/-0.60%).[98]

Overall, 10 studies collected showing statistically significant reductions in fat mass. The most dramatic loss was 1.13kg (2.48lbs) over 4 months, which is not an impressive rate of weight loss (comparing this to Ephedrine, Ephedrine can induce twice the fat mass loss in a single month). The ranges of fat loss frequently cross over the zero point (ie. 1.1+/-3.2kg weight loss means that somebody gained 2.1kg while another lost 4.3kg) and CLA's wide range of potency and poor reliability spans all studies. CLA does have the ability to be a fat burner, but even in studies where it exerts clinical signifiance its reliability and potency are poor

Conversely, no effect has been noted over 8 weeks with 2.7g active CLA of either a 50/50 isomer blend or pure c9t11 in obese hyperlipidemic men,[57] No effect of milk enriched with 1.3g CLA daily either as c9t11 or a mixed isomer blend for 4 weeks,[99] no (0+/-0.9kg) effect of 20g CLA on overall weight over 9 weeks when compared to an isocaloric amount of oleic acid (main fatty acid in Olive Oil),[100] no significant effect when 4.2g of CLA isomers are added to the daily diet via butter in food products,[8] no significant fat loss over 14 weeks using yoghurt as a medium to deliver 3.76g of CLA (35% c9t11, 35% t10c12) when diet is not controlled,[67] no effect different than placebo of CLA at 2.4g Tonalin oil (brand name) when paired with chromium at 400mg in exercising women,[55] no effect in healthy exercising men and womena t 4g for 12 weeks,[90] 3.2 and 6.4g of CLA daily for 12 weeks in obese persons showing a trend towards (-0.17kg fat mass after 12 weeks, relative to 0.11kg gain in placebo) but was statistically insignificant in reducing fat mass,[101] a loss of 0.65kg body fat over 6 months after daily ingestion of 3.2g CLA of supplementation that was not statistically significant relative to placebo,[54] 3.4g CLA daily for 2 years reduced fat mass by 1.7+/-2.4kg in obese healthy persons,[102] and no significant effect of 1.5 or 3g of either isolated isomer on fat mass over 18 weeks.[103]

More studies (11) have been conducted showing no statistically significant effects of CLA on fat loss than there have showing statistically significant fat losses, no common motifs or leads to separate the studies showing positive results and the studies showing null results

As assessed by human interventions with no regard to animal studies (due to species differences), CLA just does not appear to be a good fat burner relative to many other options out there. CLA does not show dose-response, has questionable influences on parameters of lipid and glucose metabolism, and is unreliable as well as not being overly potent
CLA, at an oral dose of 3.4g daily for a year, has also been shown to not be able to suppress weight regain after weightloss any more than placebo,[104] and in smaller trials a suppression of appetite is associated with CLA, that does not seem to reduce caloric intake.[105]


Edit8. Interactions with Skeletal Muscle

8.1. Distribution

A study investigating the kinetics of the c9t11 isomer against the t10c12 isomer found that the c9t11 isomer appears to have affinity for skeletal muscle, being preferentially stored in the phospholipid bilayer of skeletal muscle; t10c12 had affinity for triglyceride storage in adipose tissue.[24] This was also seen in another study measuring muscle CLA levels where supplementation of 4g CLA oil daily (38% c9t11) led to an increase from 0.46+/-0.08% to 0.56+/-0.06% total fatty acids[51] and t10c12 increased from not being a component, to 0.09% at the same oral load.[51]

c9t11 appears to favor disposition in skeletal muscle tissue while t10c12 gets diverted to adipose to a greater degree

8.2. Glucose Metabolism

At least one study using 4g of CLA daily (38.8% c9t11, 38% t10c12) for 12 weeks in overweight but otherwise healthy men and women found a decrease in insulin sensitivity as assessed by the glucose insulin index (glucose AUC x insulin AUC) and a mathematical model known as the 'insulin sensitivity index'.[51] Glucose AUC was increased 39% following an oral glucose tolerance test, and insulin AUC by 20%, and this was attributed to changes in myocyte fatty acid composition, particularily ceramide (which increased from 401.3nmol/g to 660.3nmol/g dry weight).[51]

8.3. Interventions

Several studies giving CLA to persons have noted changes in lean mass (defined as total weight after subtracting body fat).

Studies that come back positive note that in young obese men, 3g CLA isomers paired with 3g Fish Oil could increase lean mass by 2.4% over 12 weeks while not affecting young and lean men or older men,[106] an increase of 0.64kg after 12 weeks in response to 6.4g CLA but not 3.2g CLA isomers in otherwise healthy, obese humans,[101] an 1.8+/-4.3% average increase in lean mass from CLA at 3.4g mixed isomers for 1 year,[97] and was able to beneficially influence lean mass during a period of weight regain (after weight loss was induced by very low calorie diets), as the weight regained was 12-13.7% lean mass with 1.6-3.2g CLA (relative to 8.6-9.1% increase in placebo) over 13 weeks.[88]

Studies that come back negative note no changes in lean mass in response to 1.7g CLA daily for 3 months in overweight and obese persons,[63] 8 weeks usage of either an isomer mix of CLA at 3.5g daily or 3.5g pure c9t11 isomer in overweight men with high blood lipids,[57] no gain in lean mass after 16 weeks of 6.4g mixed CLA isomers in post-menopausal diabetic women,[95] no gain of lean mass in young and lean men, or older men, despite a gain in lean mass seen in obese youth after 3g CLA with 3g Fish Oil daily,[106] no effect of CLA at 3.9g on lean mass in non-obese persons over 12 weeks,[90] no effects from 14 weeks of CLA supplementation at 3.76g via yoghurt in healthy persons,[67] 24 months of CLA supplementation at 3.4g mixed isomers daily in overweight humans,[102] and no effect of CLA on lean mass with varying doses from 1.7-6.8g daily of mixed isomers for 12 weeks.[107]

Some studies do note a discord, with either fat loss occurring without lean mass accrual[63][95][102][107] or lean mass accrual occurring without fat mass loss.[106][101] It is plausible that lean mass and fat mass are regulated by CLA in vivo for humans by different mechanisms.

In studies that investigated Fat Mass or Weight loss, Lean Mass (total weight after subtracting fat mass) appears to increase in some but not the majority of studies. Not enough evidence to suggest that this effect is potent or reliable (it looks like it isn't), but it appears to be unrelated to the effects of CLA isomers on fat loss

One study investigated a combination of Whey Protein and Creatine monohydrate, at 36g and 9g respectively, with or without an additional 6g CLA. After 5 weeks of resistance training, these novice lifters had greater power and lean mass gains when CLA was combined with whey and creatine.[108] Whereas Whey + Creatine increased strength as assessed by bench press by 9.7% +/- 17.0% over 5 weeks, the addition of CLA enhanced these increases to 16.2% +/- 11.3%; lean mass increased 1.3% +/-4.1% in the Whey Protein and Creatine group, and by 2.4% +/- 2.8% in the group using CLA.[108] CLA by itself, at 5g daily for 7 weeks and paired with a resistance training program, is associated with a 1.3kg increase in lean mass while placebo was associated with an 0.2kg gain; and a concurrent fat loss of 0.8kg existed with CLA, while placebo gained 0.4kg; muscular gains were only significant for males tested, and although there was some benefit from CLA on bench press strength, leg press strength was only affected by exercise.[109]

When tested in non-novice athletes, young (23yr) males with an average of 5.6 years training experience and with the ability to, on average, bench more than their body weight took CLA at 6g daily with 3g other fatty acids (with placebo being 9g olive oil) no significant effects on lean mass or fat mass were observed after 28 days of training.[110]

Not too many studies investigating CLA in athletic populations rather than obese weight-loss populations, and due to the unreliability seen in the other human studies it is hard to draw conclusions from 3 studies


Edit9. Effects on Hormones

9.1. Testosterone

6g of CLA daily for 3 weeks in resistance trained men who were subject to blood tests before and after each workout did not significantly increase circulating testosterone levels in vivo.[111] However, when tested in vitro (Leydig cells) CLA appeared to have the ability to increase testosterone synthesis at a concentration of 30uM.[111]

A white button mushroom extract with a high dose of c9t11 CLA was shown in vitro was shown to be a non-competitive inhibitor of aromatase, with similar potency and mechanisms to linolenic acid (basic omega-6 fatty acid).[9] White button mushrooms do contain other aromatase inhibitors however,[112] so the aforementioned study is slightly confounded.


Edit10. Interactions with Neurology

10.1. Appetite

Two human studies have investigated as to whether CLA can affect appetite, and the results are mixed; one study noted a decrease in subjective appetite with 1.8 and 3.6g mixed CLA isomers without affecting caloric intake[105] while the other noted no influence on feelings of appetite.[90]

When investigating as to whether endogenous Oleoylethanolamide (an intrinsic appetite suppressant) is affected by dietary CLA, a study in mice comparing 3% CLA in the feed against control (3% linoleic acid) found no differences.[113]

10.2. Neural Progenitor Cells (NPCs)

One in vitro study looking at the effects of c9t11 and t10c12 isomers on NPC differentiation found that, via manipulating the protein content of Cyclin D1, the c9t11 isomer had dose independent benefits to neuronal growth with the best response at 5uM concentration while t10c12 showed dose-dependent inhibition of NPC differentiation.[18] These mechanisms of promotion are different than those seen with DHA from Fish Oil.[114]

10.3. Cell Protection

CLA appears to protect neurons from glutamate-induced excitotoxicity (3uM) in concentrations of 10-30uM (and is able to reduce cell death from 73.6+/-6.5% to 31.7+/-7.2% at 30uM),[115] and this is seen with both a CLA mixture[116] yet has been attributed to the c9t11 isomer.[115] This protective effect has also been noted after glutamate induced toxicity and was then removed with CLA introduced 1-5 hours later, suggesting that co-ingestion may not be a pre-requisite.[115] CLA does not appear to enhance cell survival on its own.[115]

The mechanism was hypothesized to be via Bcl-2 induction, which stabilizes the mitochondria and protects the mitochondria from releasing self-destructive cytokines when damaged. CLA was found to not influence the mitochondria on its own, but via Bcl-2 induction preventing mitochondria from becoming damaged from glutamate.[115]

10.4. Interactions with the Endocannabinoid System

A study on mice (not the best model for human effects of CLA) fed 3% CLA instead of linoleic acid decreased endogenous levels of 2-AG (2-Arachidonoylglycerol), an endocannabinoid, in the cerebral cortex.[113] Levels of 2-AG were unaffected in the hypothalamus, and the other endocannabinoid (anandamide) was unaffected in both locations.[113]


Edit11. Interactions with Cardiovascular Health

11.1. Endothelium (Blood vessels)

In a population of overweight and obese persons, 76.5% of which had metabolic syndrome, it was found that 3.4g CLA for 28 days was able to benefit blood vessel health in the fasted state as assessed by peripheral arterial tonometry, with fed state being statistically insignificant.[93] These results are opposite those found in a previous study, using overweight but otherwise healthy persons and using Flow-mediated Dilation (FMD) where 3.4g CLA at for 12 weeks was found to decrease blood flow.[117] Both studies had decreases in body weight (-1.13+/-1.65kg,[93] -1.1+/-1.2kg[117]) thus the effects on blood flow seem independent of the effects on weight loss.

11.2. Blood Pressure

Some studies note that CLA trends towards reductions in blood pressure relative to controls such as Safflower Oil,[93] but in general do not reach statistical signifiance.[118][119][55] Diastolic blood pressure tends to decrease more than Systolic in many of the above noted studies.

Statistically insignificant trends towards a reduction in blood pressure, or no effect whatsoever


Edit12. Exercise and Performance


Edit13. Oxidation

13.1. General Oxidation

One study assessing CLA and its effects on oxidation noted that free CLA fatty acids, as well as CLA methyl esters, exhibited dose-dependent pro-inflammatory effects in vitro while the triglycerides had no effect.[120] The mechanism may be through being oxidized (as CLA is a polyunsaturated fatty acid) and then turning into a lipid peroxide, which has been seen in other studies on rats and lambs[121] where CLA was more prone to oxidative stress than other polyunsaturated fatty acids.

In an in vitro study on low density lipoprotein (LDL), it was found that levels of CLA at 2umol/L exerted a pro-oxidative effect, but lower doses were anti-oxidative; suggesting a dose-response relation.[122]

Pairing CLA (2% of diet by weight for 21 days in rats) with Vitamin E, the standard anti-oxidative agent for dietary lipids, was able to further reduce levels of malondialdehyde (MDA, biomarker for DNA damage) whereas CLA was already able to do so; it also added to the reduction in catalase noted acutely, suggesting that both molecules additively (not synergistically) reduce oxidation as assessed by MDA and Catalase.[123] The interaction of Vitamin E and CLA as it pertains to urinary 8-iso-PGF2α (biomarker for lipid peroxidation) is insignificant.[124]

Interactions with oxidation are complex, and no consistencies are noted in humans at this moment in time

13.2. Lipid Peroxidation

A urinary biomarker, 8-iso-PGF2α, is increased in the urine as a result of lipid peroxidation induced by free radicals in the body and sometimes 8-iso-PGF2α is used as a way to assess lipid peroxidation in vivo. It has been noted to be increased after CLA consumption by 170% after 3 weeks of 7% CLA by dietary intake,[125] by 25% after 3 months of 3g daily intake,[22] 83% after 5 weeks of 5.5g CLA via enhanced butter,[8] and a 48% increase after 16 weeks of 5.5g CLA enriched milk.[126] There doesn't appear to be studies measuring 8-iso-PGF2α and not noting an increase, so it is seen as quite a reliable change after CLA supplementation.[127][128][93] When isoprostane levels are measured in the blood, they appear to reflect urinary levels.[117]

These lipid peroxidative effects may be mostly due to the t10c12 molecule, as 3.4g pure t10c12 can cause a 578% increase in urinary 8-iso-PGF2α levels while the same dose of mixed isomers caused a four-fold less increase[20] and similar doses of pure c9t11 cause a 25% increase.[22] One study to compare a mixed CLA blend (50:50 ratio) against t10c12 found the blend to increase 8-iso-PGF2α by 171% after 3.5g daily for 6 weeks, and t10c12 by 463% after 3.5g daily.[124] The first study noting 578% may be an overestimate, as obese subjects tend to have greater increases in 8-iso-PGF2α relative to leaner persons.

Reliable increases in circulating and serum 8-iso-PGF2α as a response to dietary or supplemental CLA ingestion are seen in human interventions, and the t10c12 isomer appears to be more potent than the c9t11 isomer

This increase in lipid peroxidation seen from CLA does not appear to cause endothelial distress per se,[93] and do not appear to deplete circulating levels of Vitamin E, while returning to normal levels 2 weeks after cessation of CLA supplementation.[129] Although the increase in urinary 8-iso-PGF2α has correlated to an increase in insulin resistance as assessed by euglycemic clamp.[20]

When looking at the mechanisms, it is possible that CLA could merely inhibit the degradation of 8-iso-PGF2α into its metabolite 2,3 dinor by competition. Both molecules are preferentially oxidized in peroxisomes, and an influx of CLA is able to suppress formation of 2,3 dinor while causing a backlog of 8-iso-PGF2α in vitro, and these trends are noted in rats as well.[130] Adding to this notion is how the t10c12 isomer, previously shown to be more effective in raising 8-iso-PGF2α, is more effectively and likely to be oxidized in peroxisomes relative to the c9t11 isomer.[130][131] As the only currently demonstrated method of lipid peroxidation seen in vivo is due to 8-iso-PGF2α, the notion that everything in this subsection is a false diagnosis (similar to creatinine and Creatine) cannot be ruled out.

The possibility that all the above information on pro-oxidative effects is merely due to poor use of a diagnostic marker and not actually indicative of increased lipid peroxidation is plausible


Edit14. Inflammation and Immunology

14.1. Mechanisms

t10c12, the more pluripotent isomer of CLA, appears to be pro-inflammatory. t10c12 can cause an increase in MEK/ERK signalling[46] with downstream effects on NF-kB, the nuclear transcription factor that mediates activation of cytokines.[45] t10c12 appears to work, in part, through activating the JNK receptor as inhibiting this action reduces the effects of t10c12 on increasing cytokines such as COX-2 and Interleukins.[132] Both ERK as well as NF-kB activation from CLA t10c12 are associated with decreased PPARy activation, and the cumulative effect is more inflammation and less glucose and fat uptake into adipocytes; inflammation in fat cells and PPARy activation are quite negatively correlated.[133][134][135][136][137] This reduction of glucose uptake into fat cells is also mechanistically associated with increased insulin resistance, as increasing inflammation (and thus decreasing PPARy activity) is seen as pro-diabetic.

14.2. Cytokines

7% of the diet, about 20g daily, has minimal influence on circulating IL-6 levels.[125]

14.3. Inflammatory Bowel Diseases

Inflammatory bowel diseases (in this section, referring to both Crohn's disease and ulcerative colitis) are associated with dysregulation of the immune system[138] and are thought to be responsive to the diet.[139] Persons with inflammatory bowel diseases are notorious for having a high rate of supplemental or alternative medicinal usage, with one source noting that the rate was 49.5%.[140]

CLA supplementation is thought to be protective against inflammatory bowel diseases via PPARγ activation,[141] similar to the drug 5-aminosalicylic acid;[142] rosiglitazone has also noted benefit with ulcerative colitis,[143] suggesting PPARγ is a therapeutic target. CLA has been found to upregalate the PPARγ receptor in some animal models such as bacterial-induced colitis[144] and to suppress macrophage activity via this receptor;[145] furthermore, the protective effects of CLA are abolished when the PPARγ receptor is deleted.[146]

CLA appears to offer relief from symptoms associated with inflammatory bowel diseases including ulcerative colitis and Crohn's disease though increasing PPARγ signalling; this may be due to increasing the expression of the receptor

In persons with mild to moderately active Crohn's disease given 6g of CLA daily (1:1 ratio of the two main isomers; 77% CLA by weight) for 12 weeks, the inflammatory cytokines produced by T-cells (CD4+ and CD8+) were reduced while IL-2 secretion was increased and serum IL-6 was higher after CLA ingestion.[147] The symptoms were reduced (assessed by CDAI) by 13.1% at week 6 and 23.6% at 12 weeks, and although the authors suspected that this may not be clinically significant the quality of life reported by patients increased;[147] the overall remission rate (33% of persons reporting a 100 point reduction on CDAI) is comparable to trials using rosiglitazone.[143][148]

May be benficial to persons with inflammatory bowel diseases, but this requires more trials to ascertain (as the trial in humans at this moment in time was not placebo controlled and patients did not discontinue their medication)


Edit15. Nutrient-Nutrient Interactions

15.1. PUFAs

A few human studies have paired CLA with polyunsaturated fatty acids such as Fish Oil. This combination is based on supplements like Fish Oil being able to attenuate the adverse changes seen with CLA in research animals[87] and has been seen with Flaxseed oil as well.[149] CLA, specifically the t10c12 isomer, is able to reduce PUFA content in the liver[150] and is suspected as being one (of possibly many) reasons why mice get fatty liver from CLA, as well as other adverse health effects, since PUFAs normally increase fat oxidation in the liver (via PPARa) and suppress fat accumulation (via SREBP-1c).[151]

When tested in humans, a pair of 3g CLA and 3g Fish Oil was found to not influence insulin sensitivity over 12 weeks in all but one older man tested.[152] and another study assessing young lean and obese as well as older lean and obese men (4 groups total)[106] using 2.28g of a 50/50 CLA isomer mix paired with 1.53g EPA+DHA found that, over 12 weeks and relative to placebo (palm oil and soy oil at 80/20) the combination was able to increase lean mass and decrease fat mass of obese youth (0.88+/-0.5kg increase in lean mass, -83+/-136g fat loss) but did not reach significance in either older group or lean males[106] and increased adiponectin in both young groups (9% lean, 12% obese) with no affect on older males.[106] This latter study, however, was not designed to establish synergism between the nutrients.

Some biological plausibility for the combination (theoretically beneficial), but the benefits may be species dependent and no evidence exists to establish synergism in humans

15.2. Fucoxanthin

Fucoxanthin, a fat burning pigment from brown seaweed, has been shown to be synergistic with Punicic Acid which is highly similar to CLA in structure. A study in rats using standardized diets and four groups of low (0.083mg/kg) or high (0.167mg/kg) fucoxanthin, and a third group was fed low Fucoxanthin with 0.15g/kg CLA daily (fourth group control).[153] exhibited synergistic effects in reducing circulating triglycerides and body weight in rats yet did not significantly alter much gene expression induced by fucoxanthin (PPARy, UCP2).[153]

May be synergistic for fat burning, more studies in humans would be needed (due to interspecies differences on CLA)

15.3. Resveratrol

Resveratrol and CLA have both been shown, in vitro, to reduce triglyceride build-up (during periods of caloric excess) in cultured fat cells, thus their synergism was investigated. Concentrations of 10 and 100uM of both Resveratrol and the t10c12 isomer of CLA were used in mature adipocytes, and neither synergism nor additive effects were observed on triglyceride depletion, fatty acid synthase activity, or HSL activity.[77] Trends towards negation were actually seen (with the combination being lesser than either individual part), but statistically insignificant. Another in vitro study on human fat cells noted that Resveratrol (50uM) may actually work in opposition of the t10c12 isomer (50uM), incubation of resveratrol alongside t10c12 in fat cells reduced the ability of t10c12 to prevent glucose and lipid uptake and induce inflammation, increase cell stress, and increase intracellular calcium in the fat cells.[154] Resveratrol appeared to negate suppression of PPARy by CLA, and induce activity of PPARy when incubated in isolation.[154]

When the pair is supplemented in the diet of rats, normally responsive to CLA supplementation, 30mg/kg Resveratrol paired with 1% (mixed isomer mix) CLA in the diet for 6 weeks effectively inhibited each other. 20% fat loss was seen with resveratrol and 18% seen with CLA, but the combination led to 7% reduction in fat mass.[155]

The two appear to be antagonistic, and at least with mechanisms related to PPARy Resveratrol appears to negate CLA; other effects of resveratrol related to PDE4 may be unaffected, but many effects of CLA would be effectively negated if PPARy is negated


Edit16. Safety and Toxicity

16.1. General

One year of supplementation with a high dose (7.5g CLA, 6g isomers in a 50:50 ratio) was not associated with any clinically relevant toxicology signs, although a reduction in HDL cholesterol and increase in Triglycerides were seen as statistically significant and an increase in White Blood Cell from 5.5+/-0.3 to 6.6+/-0.3K/ul was noted.[156]

16.2. During Pregnancy and Lactation

The two main isomers of CLA, c9t11 and t10c12 have been suspected, in animals, to reduce the fat output of breast milk. 750mg CLA isomers taken for 5 days in breast feeding women was not found to reduce fat content of milk, although trace amounts of CLA can be detected in breast milk.[157]

References

  1. Opposing effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans
  2. Conjugated Linoleic Acid Is Synthesized Endogenously in Lactating Dairy Cows by Delta-9-Desaturase
  3. Schiavon S, et al. Effect of high or low protein ration combined or not with rumen protected conjugated linoleic acid (CLA) on meat CLA content and quality traits of double-muscled Piemontese bulls. Meat Sci. (2011)
  4. Santercole V, et al. Total lipids of Sarda sheep meat that include the fatty acid and alkenyl composition and the CLA and trans-18:1 isomers. Lipids. (2007)
  5. Bölükbaşi SC. Effect of dietary conjugated linoleic acid (CLA) on broiler performance, serum lipoprotein content, muscle fatty acid composition and meat quality during refrigerated storage. Br Poult Sci. (2006)
  6. McCrorie TA, et al. Human health effects of conjugated linoleic acid from milk and supplements. Nutr Res Rev. (2011)
  7. Sofi F, et al. Effects of a dairy product (pecorino cheese) naturally rich in cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorheological variables: a dietary intervention study. Nutr Metab Cardiovasc Dis. (2010)
  8. Raff M, et al. A diet rich in conjugated linoleic acid and butter increases lipid peroxidation but does not affect atherosclerotic, inflammatory, or diabetic risk markers in healthy young men. J Nutr. (2008)
  9. Chen S, et al. Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Res. (2006)
  10. Ip C, Scimeca JA, Thompson HJ. Conjugated linoleic acid. A powerful anticarcinogen from animal fat sources. Cancer. (1994)
  11. Lee Y. Isomer specificity of conjugated linoleic acid (CLA): 9E,11E-CLA. Nutr Res Pract. (2008)
  12. Analysis of conjugated linoleic acid isomers and content in french cheeses
  13. Lin H, et al. Survey of the conjugated linoleic acid contents of dairy products. J Dairy Sci. (1995)
  14. Sato K, et al. The change in conjugated linoleic acid concentration in blood of Japanese fed a conjugated linoleic acid diet. J Nutr Sci Vitaminol (Tokyo). (2011)
  15. Bioconversion of vaccenic acid to conjugated linoleic acid in humans
  16. Gaullier JM, et al. Clinical trial results support a preference for using CLA preparations enriched with two isomers rather than four isomers in human studies. Lipids. (2002)
  17. Herrmann J, et al. Isomer-specific effects of CLA on gene expression in human adipose tissue depending on PPARgamma2 P12A polymorphism: a double blind, randomized, controlled cross-over study. Lipids Health Dis. (2009)
  18. Wang H, et al. Isomer-specific effects of conjugated linoleic acid on proliferative activity of cultured neural progenitor cells. Mol Cell Biochem. (2011)
  19. Treatment With Dietary trans10cis12 Conjugated Linoleic Acid Causes Isomer-Specific Insulin Resistance in Obese Men With the Metabolic Syndrome
  20. Risérus U, et al. Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: a potential link to fatty acid-induced insulin resistance. Circulation. (2002)
  21. Risérus U, et al. Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care. (2002)
  22. Risérus U, et al. Effects of cis-9,trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am J Clin Nutr. (2004)
  23. Belury MA, Mahon A, Banni S. The conjugated linoleic acid (CLA) isomer, t10c12-CLA, is inversely associated with changes in body weight and serum leptin in subjects with type 2 diabetes mellitus. J Nutr. (2003)
  24. Goedecke JH, et al. Conjugated linoleic acid isomers, t10c12 and c9t11, are differentially incorporated into adipose tissue and skeletal muscle in humans. Lipids. (2009)
  25. DeClercq V, Taylor CG, Zahradka P. Isomer-specific effects of conjugated linoleic acid on blood pressure, adipocyte size and function. Br J Nutr. (2012)
  26. Park Y, et al. Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids. (1999)
  27. Isomer-Specific Antidiabetic Properties of Conjugated Linoleic Acid
  28. Noto A, et al. Dietary conjugated linoleic acid decreases adipocyte size and favorably modifies adipokine status and insulin sensitivity in obese, insulin-resistant rats. Metabolism. (2007)
  29. DeClercq V, Zahradka P, Taylor CG. Dietary t10,c12-CLA but not c9,t11 CLA reduces adipocyte size in the absence of changes in the adipose renin-angiotensin system in fa/fa Zucker rats. Lipids. (2010)
  30. Rahman M, et al. Conjugated linoleic acid (CLA) prevents age-associated skeletal muscle loss. Biochem Biophys Res Commun. (2009)
  31. Kim JH, Kim J, Park Y. trans-10,cis-12 Conjugated Linoleic Acid Enhances Endurance Capacity by Increasing Fatty Acid Oxidation and Reducing Glycogen Utilization in Mice. Lipids. (2012)
  32. Rahman MM, et al. t10c12-CLA maintains higher bone mineral density during aging by modulating osteoclastogenesis and bone marrow adiposity. J Cell Physiol. (2011)
  33. Ringseis R, et al. LDL receptor gene transcription is selectively induced by t10c12-CLA but not by c9t11-CLA in the human hepatoma cell line HepG2. Biochim Biophys Acta. (2006)
  34. Yuki K, et al. Isolation of 9-Hydroxy-10<i>E</i>,12<i>Z</i>-octadecadienoic Acid, an Inhibitor of Fat Accumulation from <i>Valeriana fauriei</i>. Biosci Biotechnol Biochem. (2012)
  35. Yokoi H, et al. Peroxisome proliferator-activated receptor gamma ligands isolated from adlay seed (Coix lacryma-jobi L. var. ma-yuen STAPF.). Biol Pharm Bull. (2009)
  36. Hattori T, et al. G2A plays proinflammatory roles in human keratinocytes under oxidative stress as a receptor for 9-hydroxyoctadecadienoic acid. J Invest Dermatol. (2008)
  37. Ogawa A, et al. Identification and analysis of two splice variants of human G2A generated by alternative splicing. J Pharmacol Exp Ther. (2010)
  38. Kim YI, et al. Potent PPARα activator derived from tomato juice, 13-oxo-9,11-octadecadienoic acid, decreases plasma and hepatic triglyceride in obese diabetic mice. PLoS One. (2012)
  39. Nakamura YK, Omaye ST. Conjugated linoleic acid isomers' roles in the regulation of PPAR-gamma and NF-kappaB DNA binding and subsequent expression of antioxidant enzymes in human umbilical vein endothelial cells. Nutrition. (2009)
  40. Cheng WL, et al. Contribution of conjugated linoleic acid to the suppression of inflammatory responses through the regulation of the NF-kappaB pathway. J Agric Food Chem. (2004)
  41. Noone EJ, et al. The effect of dietary supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy human subjects. Br J Nutr. (2002)
  42. Halade GV, Rahman MM, Fernandes G. Differential effects of conjugated linoleic acid isomers in insulin-resistant female C57Bl/6J mice. J Nutr Biochem. (2010)
  43. Halade GV, Rahman MM, Fernandes G. Effect of CLA isomers and their mixture on aging C57Bl/6J mice. Eur J Nutr. (2009)
  44. Valeille K, et al. Lipid atherogenic risk markers can be more favourably influenced by the cis-9,trans-11-octadecadienoate isomer than a conjugated linoleic acid mixture or fish oil in hamsters. Br J Nutr. (2004)
  45. Chung S, et al. Conjugated linoleic acid promotes human adipocyte insulin resistance through NFkappaB-dependent cytokine production. J Biol Chem. (2005)
  46. Brown JM, et al. Conjugated linoleic acid induces human adipocyte delipidation: autocrine/paracrine regulation of MEK/ERK signaling by adipocytokines. J Biol Chem. (2004)
  47. Kennedy A, et al. Inflammation and insulin resistance induced by trans-10, cis-12 conjugated linoleic acid depend on intracellular calcium levels in primary cultures of human adipocytes. J Lipid Res. (2010)
  48. Brown JM, et al. Isomer-specific regulation of metabolism and PPARgamma signaling by CLA in human preadipocytes. J Lipid Res. (2003)
  49. Papaetis GS, Orphanidou D, Panagiotou TN. Thiazolidinediones and type 2 diabetes: from cellular targets to cardiovascular benefit. Curr Drug Targets. (2011)
  50. Eyjolfson V, Spriet LL, Dyck DJ. Conjugated linoleic acid improves insulin sensitivity in young, sedentary humans. Med Sci Sports Exerc. (2004)
  51. Thrush AB, et al. Conjugated linoleic acid increases skeletal muscle ceramide content and decreases insulin sensitivity in overweight, non-diabetic humans. Appl Physiol Nutr Metab. (2007)
  52. Moloney F, et al. Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. Am J Clin Nutr. (2004)
  53. Watras AC, et al. The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain. Int J Obes (Lond). (2007)
  54. Syvertsen C, et al. The effect of 6 months supplementation with conjugated linoleic acid on insulin resistance in overweight and obese. Int J Obes (Lond). (2007)
  55. Diaz ML, et al. Chromium picolinate and conjugated linoleic acid do not synergistically influence diet- and exercise-induced changes in body composition and health indexes in overweight women. J Nutr Biochem. (2008)
  56. Laso N, et al. Effects of milk supplementation with conjugated linoleic acid (isomers cis-9, trans-11 and trans-10, cis-12) on body composition and metabolic syndrome components. Br J Nutr. (2007)
  57. Joseph SV, et al. Conjugated linoleic acid supplementation for 8 weeks does not affect body composition, lipid profile, or safety biomarkers in overweight, hyperlipidemic men. J Nutr. (2011)
  58. Asp ML, et al. Time-dependent effects of safflower oil to improve glycemia, inflammation and blood lipids in obese, post-menopausal women with type 2 diabetes: a randomized, double-masked, crossover study. Clin Nutr. (2011)
  59. Rasooly R, et al. Dietary trans 10, cis 12-conjugated linoleic acid reduces the expression of fatty acid oxidation and drug detoxification enzymes in mouse liver. Br J Nutr. (2007)
  60. Cooper MH, et al. Conjugated linoleic acid isomers have no effect on atherosclerosis and adverse effects on lipoprotein and liver lipid metabolism in apoE-/- mice fed a high-cholesterol diet. Atherosclerosis. (2008)
  61. Degrace P, et al. Association of liver steatosis with lipid oversecretion and hypotriglyceridaemia in C57BL/6j mice fed trans-10,cis-12-linoleic acid. FEBS Lett. (2003)
  62. Clément L, et al. Dietary trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res. (2002)
  63. Chen SC, et al. Effect of conjugated linoleic acid supplementation on weight loss and body fat composition in a Chinese population. Nutrition. (2012)
  64. Vyas D, Kadegowda AK, Erdman RA. Dietary conjugated linoleic Acid and hepatic steatosis: species-specific effects on liver and adipose lipid metabolism and gene expression. J Nutr Metab. (2012)
  65. Moya-Camarena SY, et al. Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. J Lipid Res. (1999)
  66. Moya-Camarena SY, Van den Heuvel JP, Belury MA. Conjugated linoleic acid activates peroxisome proliferator-activated receptor alpha and beta subtypes but does not induce hepatic peroxisome proliferation in Sprague-Dawley rats. Biochim Biophys Acta. (1999)
  67. Nazare JA, et al. Daily intake of conjugated linoleic acid-enriched yoghurts: effects on energy metabolism and adipose tissue gene expression in healthy subjects. Br J Nutr. (2007)
  68. Evans M, et al. Trans-10,cis-12 conjugated linoleic acid reduces triglyceride content while differentially affecting peroxisome proliferator activated receptor gamma2 and aP2 expression in 3T3-L1 preadipocytes. Lipids. (2001)
  69. Brown JM, et al. Trans-10, cis-12, but not cis-9, trans-11, conjugated linoleic acid attenuates lipogenesis in primary cultures of stromal vascular cells from human adipose tissue. J Nutr. (2001)
  70. Lau DS, Archer MC. The 10t,12c isomer of conjugated linoleic acid inhibits fatty acid synthase expression and enzyme activity in human breast, colon, and prostate cancer cells. Nutr Cancer. (2010)
  71. Zabala A, et al. trans-10,cis-12 Conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic diet. Br J Nutr. (2006)
  72. Macarulla MT, et al. Effects of conjugated linoleic acid on liver composition and fatty acid oxidation are isomer-dependent in hamster. Nutrition. (2005)
  73. Pariza MW, Park Y, Cook ME. The biologically active isomers of conjugated linoleic acid. Prog Lipid Res. (2001)
  74. Kang K, et al. trans-10,cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPAR gamma expression. Biochem Biophys Res Commun. (2003)
  75. Tsuboyama-Kasaoka N, et al. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes. (2000)
  76. Miranda J, et al. Weak effect of trans-10, cis-12-conjugated linoleic acid on body fat accumulation in adult hamsters. Br J Nutr. (2009)
  77. Lasa A, et al. The combination of resveratrol and CLA does not increase the delipidating effect of each molecule in 3T3-L1 adipocytes. Nutr Hosp. (2011)
  78. Chung S, et al. Trans-10,cis-12 CLA increases adipocyte lipolysis and alters lipid droplet-associated proteins: role of mTOR and ERK signaling. J Lipid Res. (2005)
  79. Clifford GM, et al. Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimulation during the lactation cycle of the rat. Metabolism. (2001)
  80. Evans M, et al. Trans-10, cis-12 conjugated linoleic acid increases fatty acid oxidation in 3T3-L1 preadipocytes. J Nutr. (2002)
  81. Park Y, et al. Effect of conjugated linoleic acid on body composition in mice. Lipids. (1997)
  82. Moon HS, et al. Down-regulation of PPARgamma2-induced adipogenesis by PEGylated conjugated linoleic acid as the pro-drug: Attenuation of lipid accumulation and reduction of apoptosis. Arch Biochem Biophys. (2006)
  83. Park Y, et al. Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid. Lipids. (1999)
  84. Moya-Camarena SY, Belury MA. Species differences in the metabolism and regulation of gene expression by conjugated linoleic acid. Nutr Rev. (1999)
  85. Navarro V, et al. The body fat-lowering effect of conjugated linoleic acid: a comparison between animal and human studies. J Physiol Biochem. (2006)
  86. Andreoli MF, et al. Effects of dietary conjugated linoleic acid at high-fat levels on triacylglycerol regulation in mice. Nutrition. (2009)
  87. Ide T. Interaction of fish oil and conjugated linoleic acid in affecting hepatic activity of lipogenic enzymes and gene expression in liver and adipose tissue. Diabetes. (2005)
  88. Kamphuis MM, et al. The effect of conjugated linoleic acid supplementation after weight loss on body weight regain, body composition, and resting metabolic rate in overweight subjects. Int J Obes Relat Metab Disord. (2003)
  89. Close RN, et al. Conjugated linoleic acid supplementation alters the 6-mo change in fat oxidation during sleep. Am J Clin Nutr. (2007)
  90. Lambert EV, et al. Conjugated linoleic acid versus high-oleic acid sunflower oil: effects on energy metabolism, glucose tolerance, blood lipids, appetite and body composition in regularly exercising individuals. Br J Nutr. (2007)
  91. Conjugated Linoleic Acid Reduces Body Fat Mass in Overweight and Obese Humans
  92. Thom E, Wadstein J, Gudmundsen O. Conjugated linoleic acid reduces body fat in healthy exercising humans. J Int Med Res. (2001)
  93. Pfeuffer M, et al. CLA does not impair endothelial function and decreases body weight as compared with safflower oil in overweight and obese male subjects. J Am Coll Nutr. (2011)
  94. Racine NM, et al. Effect of conjugated linoleic acid on body fat accretion in overweight or obese children. Am J Clin Nutr. (2010)
  95. Norris LE, et al. Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. Am J Clin Nutr. (2009)
  96. Metabolic effects of conjugated linoleic acid in humans: the Swedish experience
  97. Gaullier JM, et al. Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am J Clin Nutr. (2004)
  98. Carvalho RF, Uehara SK, Rosa G. Microencapsulated conjugated linoleic acid associated with hypocaloric diet reduces body fat in sedentary women with metabolic syndrome. Vasc Health Risk Manag. (2012)
  99. Venkatramanan S, et al. Milk enriched with conjugated linoleic acid fails to alter blood lipids or body composition in moderately overweight, borderline hyperlipidemic individuals. J Am Coll Nutr. (2010)
  100. Wanders AJ, et al. Effect of a high intake of conjugated linoleic acid on lipoprotein levels in healthy human subjects. PLoS One. (2010)
  101. Steck SE, et al. Conjugated linoleic acid supplementation for twelve weeks increases lean body mass in obese humans. J Nutr. (2007)
  102. Gaullier JM, et al. Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans. J Nutr. (2005)
  103. Malpuech-Brugère C, et al. Effects of two conjugated linoleic Acid isomers on body fat mass in overweight humans. Obes Res. (2004)
  104. Larsen TM, et al. Conjugated linoleic acid supplementation for 1 y does not prevent weight or body fat regain. Am J Clin Nutr. (2006)
  105. Kamphuis MM, et al. Effect of conjugated linoleic acid supplementation after weight loss on appetite and food intake in overweight subjects. Eur J Clin Nutr. (2003)
  106. Sneddon AA, et al. Effect of a conjugated linoleic acid and omega-3 fatty acid mixture on body composition and adiponectin. Obesity (Silver Spring). (2008)
  107. Blankson H, et al. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J Nutr. (2000)
  108. Cornish SM, et al. Conjugated linoleic acid combined with creatine monohydrate and whey protein supplementation during strength training. Int J Sport Nutr Exerc Metab. (2009)
  109. Pinkoski C, et al. The effects of conjugated linoleic acid supplementation during resistance training. Med Sci Sports Exerc. (2006)
  110. Kreider RB, et al. Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers. J Strength Cond Res. (2002)
  111. Macaluso F, et al. Effect of conjugated linoleic acid on testosterone levels in vitro and in vivo after an acute bout of resistance exercise. J Strength Cond Res. (2012)
  112. Grube BJ, et al. White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation. J Nutr. (2001)
  113. Tsuyama S, et al. Dietary conjugated linoleic acid modifies the brain endocannabinoid system in mice. Nutr Neurosci. (2009)
  114. Katakura M, et al. Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix-loop-helix transcription factors and cell cycle in neural stem cells. Neuroscience. (2009)
  115. Hunt WT, et al. Protection of cortical neurons from excitotoxicity by conjugated linoleic acid. J Neurochem. (2010)
  116. Joo NE, Park CS. Inhibition of excitotoxicity in cultured rat cortical neurons by a mixture of conjugated linoleic acid isomers. Pharmacol Res. (2003)
  117. Taylor JS, et al. Conjugated linoleic acid impairs endothelial function. Arterioscler Thromb Vasc Biol. (2006)
  118. Engberink MF, et al. The effect of conjugated linoleic acid, a natural trans fat from milk and meat, on human blood pressure: results from a randomized crossover feeding study. J Hum Hypertens. (2012)
  119. Raff M, et al. Diets rich in conjugated linoleic acid and vaccenic acid have no effect on blood pressure and isobaric arterial elasticity in healthy young men. J Nutr. (2006)
  120. Reassessment of the antioxidant activity of conjugated linoleic acids
  121. Conjugated linoleic acid and oxidative stress
  122. Antioxidant effects of conjugated linoleic acid isomers in isolated human low-density lipoproteins
  123. Santos-Zago LF, Botelho AP, de Oliveira AC. Supplementation with commercial mixtures of conjugated linoleic acid in association with vitamin E and the process of lipid autoxidation in rats. Lipids. (2007)
  124. Smedman A, Vessby B, Basu S. Isomer-specific effects of conjugated linoleic acid on lipid peroxidation in humans: regulation by alpha-tocopherol and cyclo-oxygenase-2 inhibitor. Clin Sci (Lond). (2004)
  125. Smit LA, et al. A high intake of trans fatty acids has little effect on markers of inflammation and oxidative stress in humans. J Nutr. (2011)
  126. Tholstrup T, et al. An oil mixture with trans-10, cis-12 conjugated linoleic acid increases markers of inflammation and in vivo lipid peroxidation compared with cis-9, trans-11 conjugated linoleic acid in postmenopausal women. J Nutr. (2008)
  127. Basu S, Smedman A, Vessby B. Conjugated linoleic acid induces lipid peroxidation in humans. FEBS Lett. (2000)
  128. Turpeinen AM, et al. Immunological and metabolic effects of cis-9, trans-11-conjugated linoleic acid in subjects with birch pollen allergy. Br J Nutr. (2008)
  129. Basu S, et al. Conjugated linoleic acid induces lipid peroxidation in men with abdominal obesity. Clin Sci (Lond). (2000)
  130. Iannone A, et al. Impairment of 8-iso-PGF(2ALPHA) isoprostane metabolism by dietary conjugated linoleic acid (CLA). Prostaglandins Leukot Essent Fatty Acids. (2009)
  131. Banni S, et al. Conjugated linoleic acids (CLA) as precursors of a distinct family of PUFA. Lipids. (2004)
  132. Martinez K, Kennedy A, McIntosh MK. JNK inhibition by SP600125 attenuates trans-10, cis-12 conjugated linoleic acid-mediated regulation of inflammatory and lipogenic gene expression. Lipids. (2011)
  133. Suzawa M, et al. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol. (2003)
  134. Ruan H, Pownall HJ, Lodish HF. Troglitazone antagonizes tumor necrosis factor-alpha-induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NF-kappaB. J Biol Chem. (2003)
  135. Mitogen-activated protein kinase activation is not necessary for, but antagonizes, 3T3-L1 adipocytic differentiation
  136. Adams M, et al. Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem. (1997)
  137. Ruan H, et al. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes. (2002)
  138. Marks DJ. Defective innate immunity in inflammatory bowel disease: a Crohn's disease exclusivity. Curr Opin Gastroenterol. (2011)
  139. Ioannidis O, et al. Nutritional modulation of the inflammatory bowel response. Digestion. (2011)
  140. Kong SC, et al. The Incidence of self-prescribed oral complementary and alternative medicine use by patients with gastrointestinal diseases. J Clin Gastroenterol. (2005)
  141. Bassaganya-Riera J, Hontecillas R. Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. (2010)
  142. Rousseaux C, et al. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J Exp Med. (2005)
  143. Lewis JD, et al. Rosiglitazone for active ulcerative colitis: a randomized placebo-controlled trial. Gastroenterology. (2008)
  144. Hontecillas R, et al. Nutritional regulation of porcine bacterial-induced colitis by conjugated linoleic acid. J Nutr. (2002)
  145. Yu Y, Correll PH, Vanden Heuvel JP. Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR gamma-dependent mechanism. Biochim Biophys Acta. (2002)
  146. Bassaganya-Riera J, et al. Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology. (2004)
  147. Bassaganya-Riera J, et al. Conjugated linoleic acid modulates immune responses in patients with mild to moderately active Crohn's disease. Clin Nutr. (2012)
  148. Lewis JD, et al. An open-label trial of the PPAR-gamma ligand rosiglitazone for active ulcerative colitis. Am J Gastroenterol. (2001)
  149. Kelley DS, et al. Flaxseed oil prevents trans-10, cis-12-conjugated linoleic acid-induced insulin resistance in mice. Br J Nutr. (2009)
  150. Kelley DS, et al. Fatty acid composition of liver, adipose tissue, spleen, and heart of mice fed diets containing t10, c12-, and c9, t11-conjugated linoleic acid. Prostaglandins Leukot Essent Fatty Acids. (2006)
  151. El-Badry AM, Graf R, Clavien PA. Omega 3 - Omega 6: What is right for the liver. J Hepatol. (2007)
  152. Ahrén B, et al. Effects of conjugated linoleic acid plus n-3 polyunsaturated fatty acids on insulin secretion and estimated insulin sensitivity in men. Eur J Clin Nutr. (2009)
  153. Hu X, et al. Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Arch Biochem Biophys. (2012)
  154. Kennedy A, et al. Conjugated linoleic acid-mediated inflammation and insulin resistance in human adipocytes are attenuated by resveratrol. J Lipid Res. (2009)
  155. Arias N, et al. The combination of resveratrol and conjugated linoleic acid is not useful in preventing obesity. J Physiol Biochem. (2011)
  156. Whigham LD, et al. Safety profile of conjugated linoleic acid in a 12-month trial in obese humans. Food Chem Toxicol. (2004)
  157. Hasin A, et al. Consumption of c9,t11-18:2 or t10,c12-18:2 enriched dietary supplements does not influence milk macronutrients in healthy, lactating women. Lipids. (2007)
  158. Kim J, et al. Eight weeks of conjugated linoleic acid supplementation has no effect on antioxidant status in healthy overweight/obese Korean individuals. Eur J Nutr. (2012)
  159. Stickford JL, et al. Conjugated linoleic acid's lack of attenuation of hyperpnea-induced bronchoconstriction in asthmatic individuals in the short term. Int J Sport Nutr Exerc Metab. (2011)
  160. Wanders AJ, et al. A high intake of conjugated linoleic acid does not affect liver and kidney function tests in healthy human subjects. Food Chem Toxicol. (2010)
  161. Sluijs I, et al. Dietary supplementation with cis-9,trans-11 conjugated linoleic acid and aortic stiffness in overweight and obese adults. Am J Clin Nutr. (2010)
  162. Iwata T, et al. Safety of dietary conjugated linoleic acid (CLA) in a 12-weeks trial in healthy overweight Japanese male volunteers. J Oleo Sci. (2007)
  163. Tricon S, et al. Effects of dairy products naturally enriched with cis-9,trans-11 conjugated linoleic acid on the blood lipid profile in healthy middle-aged men. Am J Clin Nutr. (2006)
  164. Kuhnt K, et al. Dietary supplementation with 11trans- and 12trans-18:1 and oxidative stress in humans. Am J Clin Nutr. (2006)
  165. Colakoglu S, et al. Cumulative effects of conjugated linoleic acid and exercise on endurance development, body composition, serum leptin and insulin levels. J Sports Med Phys Fitness. (2006)
  166. Smedman A, et al. Conjugated linoleic acid increased C-reactive protein in human subjects. Br J Nutr. (2005)

(Common misspellings for Conjugated Linoleic Acid include conjugted, linolenic, linolic, )

(Common phrases used by users for this page include cla usage, cla supplement independent reviews, cla side effects circulation, cla fatty liver evidence in humans, cla and liver problem, cal daily 3.2 g/day 50:50 isomers c9, t11 good (cis fatty acid good)t10, c12 bad but ok if 50:50)

(Users who contributed to this page include , jhull, )